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Abstract— Handshaking is a fundamental part of human
physical interaction that is transversal to various cultural back-
grounds. It is also a very challenging task in the field of Physical
Human-Robot Interaction (pHRI), requiring compliant force
control in order to plan for the arm’s motion and a confident but
at the same time pleasant grasp of the human user’s hand based
on tactile sensing. In this paper we focus on the second challenge
and perform a set of physical interaction experiments between
twenty human subjects and Vizzy, a social robot whose hands
are instrumented with tactile sensors that provide skin-like
sensation. From these experiments, we (i) learn the preferred
grip closure according to each user group (ii) analyze the tactile
feedback provided by the sensors for each closure. In addition
to the robot-human interactions, Vizzy executed handshake
interactions with inanimate objects in order to (iii) detect if it
is handshaking with a human or with an inanimate object. This
work adds physical human-robot interaction to the repertory
of social skills of Vizzy, fulfilling a demand previously identified
by many users of the robot.

I. INTRODUCTION

The handshake between humans is a social ritual that has
various connotations according to the cultural background
and can convey trust, recognition, and equality. The initial
steps of social interactions between humans usually include
handshaking, so in humanoid robots the capability of per-
forming handshaking actions and the ability detect them
properly may help interaction in certain Human-robot scenar-
ios. Handshaking is a very complex interaction that includes
complex sensorimotor skills such as force-compliance, tac-
tile feedback, and gaze synchronization. Force compliance
provides the skills for the correct motion of the wrist for
leading and following the human handshake movement.
Tactile feedback can provide the skills for the correct motion
of the finger limbs for an adequate pressure value of the
handshake. Gaze synchronization is a clue that conveys the
signal for starting/ending the handshake. Providing the skills
above to a humanoid robot is a very complex task that
is currently limited mainly by the development of tactile
sensing, where the development of materials that can sense
properly and provide comfort is one of the main problems.
In this work we address tactile sensing problems in the
context of handshaking between a person and a humanoid
robot, considering two scientific questions: (i) Does the hand-
shaped end-effector of the humanoid robot Vizzy [1] provide
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Fig. 1. Vizzy robot performing a handshake

a comfortable sensation in terms of force and touch inter-
action during the handshake? and (ii) Is the robot capable
of detecting if it is grasping a hand or another inanimate
object during handshake interactions? Vizzy’s four fingers
are instrumented with a total of 15 tactile sensors. These
sensors have two main functions (i) measure the forces being
exerted at the points of contact and (ii) provide compliance
and a more human-like touch feedback to the user. In this
work we study the forces exerted by Vizzy’s thumb, index
and middle finger.

Recent developments on tactile sensors that provide both
a comfortable contact for handshaking and an accurate mea-
surement of the force [2]. The sensors provide an estimation
of the force from the changes in the magnetic field, con-
sidering three main elements: (i) A 3 dimensional hall effect
sensor, (ii) A magnet and (iii) a silicon cover for the magnet.
The changes in magnetic field due to the deformation of the
silicon part are mapped onto 3 dimensional forces, which
provide the tactile perception to the silicon cover. Since
silicon is one of the materials that are being studied for
providing a skin-like sensation [3], we expect that people
will feel comfortable during handshaking from the touch
interaction point of view. However, the force exerted by
the robot will play a fundamental role. Thus, to answer
question one we study three different finger configurations,
which correspond to a weak, medium and high strength of
the handshake. Then we ask several persons to rank the
handshakes by their preference, in order to find the preferred
grip strength and evaluate qualitatively the handshakes.



In addition to the quality of the handshake, the basic
perceptual skill of a robotic handshake is to distinguish
between grasping an object and a human hand from tactile
feedback. This skill is the basic building component of totally
autonomous handshaking, allowing to take corrective actions
in case of disengagement and deceiving interactions. We
gather the magnetic field and force data from the sensors
during handshaking interactions with persons and inanimate
objects, feeding the data to a supervised machine learning
binary classifier. On subsequent interactions with objects, the
classifier is able to detect if the interaction was with a hand
or with an inanimate object.

II. RELATED WORK

Physical Human-Robot Interaction (pHRI) is a field whose
origins date back to the 90s and 2000s [4]. It is nowadays
receiving increased attention due to recent developments on
haptic sensors [2] as well as applications in either social
robotics [5] or industrial environments [6]. Handshaking is
one of the subjects studied on pHRI and is starting to receive
some interest by several authors. The majority of works on
Human-Robot handshakes focus on the planning and the
shake motion [7] [8] of the robotic arm or mimicking a
human’s grasp [9] [10].

Several works study Human-Human handshakes as a ba-
sis for Human-Robot handshaking. In [11] a handshaking
approaching model is proposed based on the analysis of the
position of the wrists and hands of the participants. This
motion model is further expanded in [12] to take the start
time of a handshake request into consideration. Similarly,
[13] also studies gaze when requesting for a handshake in
addition to the previous motion model. The lag between
the start of the request of a handshake and the start of
a response, as well as the motion model of the response
preferred by humans, are discussed in [14] and [15]. [16] also
studies the duration, strength of grip, vigor, and rhythmicity
of handshakes between humans. They make use of six force
sensors to study the strength of grip.

On [17] a handshaking reactive robotic interface was
developed. The designers of this solution took haptics into
consideration for both the mechanical design as well as the
controller design of the interface. To comfortably close the
hand of the robot, the authors of this work measured the
grasping force of humans, which was discovered to have
a median value of 25N and a maximum value of 50N.
The resulting interface consists of a four finger hand. It
is also worth noting that during the user studies with the
final interface, the authors noted that grasping forces applied
by the subjects on the robot were different that those of
Human-Human interaction. However, given the fact that a
robotic hand has different pressure points than a human
hand using the overall grasping force as a control reference
might pose some comfort problems. This issue is covered in
[18], showing that even with a lower overall grasping force,
there are points in the robotic grasp where the pressure is
way higher (and possibly more uncomfortable) than the one
produced by a human hand.

Another interesting work [19] intends to create a model
of tactile features to discriminate intrinsic characteristics
of a person. They are able to recognize the gender of a
person with a success rate of 77% and the extroversion with
62% success rate. For female participants, the mean sensor
pressure on the sensors was of 25.8 kPa, with a standard
deviation of 22.3kPa. For males, it was of 29.4 kPa and 16
kPa, respectively.

None of the above works, however, seem to employ a user-
centered approach, where the handshake grasping is designed
directly with user feedback.

To our knowledge, no attempts were made to discriminate
between a fake and a real handshake. However, works like
[20], where the system is able to classify between several
materials with tactile sensors, or [21] [22] that focus on
object recognition make us believe that tactile features are
rich enough for this matter.

III. VIZZY’S HAND DESIGN

The Robotic platform used in this work is the robot
Vizzy [1], designed as a human assitant for social interaction
tasks. Vizzy has an anthropomorphic upper body with similar
degrees of freedom and motion execution skills of a human.
Regarding its hands, the palm and finger sizes and number of
limbs are also similar to an adult person, but having only four
fingers capable of grasping objects. The thumb and index
fingers are actuated each one by a single motor, while the
middle and ring fingers are coupled to one motor. The motor
of a finger is coupled to a pulley, that pulls a fishing line
string. The fishing line string is attached from the pulley
to the last limb of the finger, such that the motion of one
motor moves in an underactuaded manner the three limbs
of each finger. Regarding the sensors, the thumb has three
sensors and the rest of the fingers have four sensors each.
The sensors are distributed as shown in Fig. 2.

These tactile sensors [2] are composed by a soft elastomer
body with a small permanent magnet inside. Below the
magnet there is a magnetic field sensing element (i.e. Hall-
effect sensor). When an external force is applied on the
elastomer the relative magnet position changes and the Hall-
effect sensor detects the magnetic field variation, that can
be converted in a measurement of the applied force. An air
gap is left between the elastomer and the magnetic sensor in
order to increase the sensitivity for small forces. The use of a
3-axis Hall-effect sensor allows the detection of the magnetic
field variations in the 3 axis, meaning the sensor is capable
of measuring the force magnitude and direction in 3D. On
this preliminary work we only used three fingers: thumb,
pointer, and middle. The hand designed criteria included: (i)
Similarity to human’s hand size and (ii) the execution of two
types of object grasping: cylindrical and power grasp. Since
the design did not consider handshake actions, we performed
an user human-robot handshake study for evaluating the
plausibility of that kind of interaction.



Fig. 2. Indexes of the force sensors in Vizzy’s hand

IV. HUMAN-ROBOT HANDSHAKE STUDY

In order to assess user preferences regarding handshake
grip strength, we conducted a series of experiments with
users and our robot Vizzy [1].

These experiments consisted in asking people to hand-
shake with the robot three times. The handshake starts with
an initial position of finger joints (which corresponds to three
motors), followed by a timely closing of the fingers to the
final position. The final motor positions are associated to the
handshake strength label, having the largest motor positions
with the label “strong”, the lowest motor positions as “weak”
and the intermediate motor positions as “medium”. After the
execution of the three handshakes by the robot, we ask the
participants to sort the handshake by their preference. The
users are asked to rank the handshakes by considering mainly
the strength that conveys an adequate handshake interaction.
This means that the strength should be high enough to be
engaged in the handshake, and at the same time low enough
that does not make the person feel uncomfortable nor causes
an injury. This means that handshakes with very low strength
are ranked low as well as handshakes with very high strength.
To avoid biased opinions due to eventual meetings between
participants or their expectancy regarding the sequence of
handshakes, the order of the three handshakes was random.

Fig. 3. Objects used as the ”no hand” class.

Given the fact the different persons have different hand
sizes, analysis of handshake preferences based just on the
final position of the fingers of the robot may not be mean-
ingful. Since the same finger position would have a very
large variability across different hand sizes, we analyzed the
mean and variance of the forces measured by each sensor
using two different ways of grouping: (i) The strength label
from the final finger position and (ii) the preference level
provided by the users. We collect the temporal sequence of
the magnetic flux and force data from each tactile sensor
during the handshake interactions, which will be utilized in
the hand detection study.

V. HAND DETECTION STUDY

In this section we tackle the problem of detecting whether
the robot has performed a handshake on a human hand or
on an other type of (inanimate) object. In order to do so
we exploit the information gathered by force sensors and
employ a supervised machine learning approach, the K-
Nearest Neighbors algorithm.

We utilize the human-robot handshake data of the study
described in the previous section, and collect the temporal
sequences of tactile sensing readings from 11 (non-hand)
objects during handshake execution, storing both the raw
value of the magnetic flux (Oersted, Oe) and the force (N)
estimated from the magnetic flux. On each object Vizzy
executed the three handshake primitives (resulting in 3 grasps
per object) as well as three empty grasps. These grasps
form the ”no hand” class. The selected objects are shown in
Fig. 3, which cover both rigid (0,4) and deformable objects
(1,2,3,5,6,7,8,9). Data is then split into training and test sets.
We randomly sample 49 handshakes and 26 object grasps
for training (80% of the initial dataset) and 11 handshakes
and 8 object grasps for testing (remaining 20% of the



dataset). Additionally, we included the weak and strong
empty handshakes in the training set and the medium empty
handshake in the test set. The reason for this is to have
training data for the special case where the sensors are not
in contact with anything.

VI. EXPERIMENTAL SETUP

A. User information from the robot-human handshake study

The experiments were performed on a population of 20
subjects, 13 male and 7 female, with ages comprising of
20 to 51 years old. Each subject was briefly introduced
to the experiment. The robot performed always the same
movements, however, the way of placing the hand for the
handshake was left free to be chosen by each subject.

After the performance of the 3 different handshakes we
asked each subject to classify the handshakes from the most
liked to the least, and also some overall opinion about the
experiment.

B. Hand detection study

The number of handshake samples gathered is not large
enough to estimate properly the parameters of complex learn-
ing algorithms such as deep neural network. For this reason,
we used a K-Nearest Neighbors approach with Dynamic
Time Warping [23] as the distance measure, a method that
achieves state-of-the-art results on the classification of time
series in small datasets [24].

1) Hyper-parameter tuning and cross-validation: To tune
the hyper-parameter K, we use 10 iterations of 7-fold cross-
validation and choose the K that yields the lowest average
miss-classification error. For each iteration the 7 folds are
randomly sampled from the training set using a uniform
distribution. We use 7 folds because it is the greatest common
divisor of the number of handshakes (49) and the number of
”no hand” events (28) for training, allowing us to have easy
splits.

2) Features and metric: During our experiments we used
two different classifiers: one based on Forces (N) and one
based on Fields (Oe). For both classifiers the features are the
time series of the three X , Y , Z, Cartesian components of
the force or magnetic flux, on each of the eleven sensors.

Since each experiment had a different duration, which is
not controlled, we used the Dynamic Time Warping [25]
algorithm to compute a comparison metric between samples.

VII. RESULTS

A. User preferable grip strength

The 3 predefined handshake movements were called of
”Weak”, ”Medium” and ”Strong”, due to the different fin-
ger joint references for each one associated to handshake
strength. To visualize the magnitude of the forces applied on
the sensors for each movement, we plot in Fig.4 the means
and variances of the sensor readings. As we can see, sensors
number 3 and 11 (fingertips), and sensors 9, 10 (middle
finger) make almost no contact with the human’s hand. This
is to be expected since Vizzy’s hand is larger than the average
human’s hand and the under-actuated finger limbs move to
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Fig. 4. Average and variance of the force measured on each sensor for
each handshake action

different final configurations depending on the initial contact
points. As expected the variance on the most active sensors
for each closing is large due to the different sizes of human
hands.

The total force magnitudes presented correspond to the
sum of forces in the contact points between the human hand
and the tactile sensors. There is a high area of contact (mainly
in the palm of the robot hand) where the force is not mea-
sured, reason why the obtained values (Table I) are under the
expected total force of a human handshake. The calculation
of the handshake force, however, was never the objective of
the experiment since what we wished to study was the most
comfortable force distribution along the available sensors.
Statistical information regarding this distribution is presented
in Fig. 5. We note that people preferred similar forces on
sensors 1, 2, and 6 that represent the main contact points of
the thumb and pointer fingers. These preliminary results give
us an idea of force distributions that can be used as feedback
for a handshake grip strength controller.

From the data collected we can observe that female
subjects preferred a slightly larger grip force than the male
subjects (see table I and table II). This can be explained by
our methodology, because the 3 different grips are defined
only by the final angular position of the encoders in the
motors. The resulting force that is applied by the robot and
felt by the human subject is produced by the elasticity and
compliance of the artificial tendons and sensors in the robot
hand. Consequently, the force felt by the human is highly
dependent on the shape and size of the human hand. We note
that for smaller hands two of the handshakes have very low
contact forces leading people to prefer to the third handshake,
since there were no more options skewing the data.

B. User experience qualitative feedback

The feedback given by the human subjects shows that
despite the metallic hand, the silicon sensors give a very com-
fortable touch and grip. Many were surprised with a much



Sensor Number
1 2 3 4 5 6 7 8 9 10 11

F
or

ce
 [N

]

0

0.5

1

1.5

2

2.5

3

3.5

4

Bad
Medium
Good

Fig. 5. Average and variance of the force measured on each sensor
according to the user preference

TABLE I
AVERAGE SUM OF SENSOR FORCES BY USER FEEDBACK

Average Force (N)
Grade Bad Medium Good
Female 6.79 7.96 11.41
Male 8.63 13.22 10.50
Total 7.76 11.33 10.81

more comfortable handshake in opposition to the initial ex-
pectations due to the robotic looks of Vizzy’s hand. However,
they had some constructive criticism regarding the thumb
contacts. These were perceived as slightly stronger than the
remaining fingers, thus needing adjustment. Regarding the
execution of the handshake, people suggested that all the
fingers should close at the same time and that the arm should
execute the oscillatory motion of a handshake. Concerning
the aesthetics and design of the hand, our subjects reported
that the hand was larger than expected, and that the palm of
the robot should have the same tactile feeling as the material
of the sensors. Including tactile sensors in the palm would
increase the comfort of the handshake and simultaneously
provide added perceptual information to exploit.

C. Handshake classifier

We now evaluate the performance of the magnetic flux
and Force based classifiers. The results of the 7 fold cross-
validation step for the force-based features classifier are
shown in Fig. 6. We have two minimum values for the miss-
classification error at K = 3 and at K = 11. Choosing
11 as the final value for K we proceeded to test this

TABLE II
PREFERRED HANDSHAKE ACTION

Preferred handshake (%)
Soft Medium Strong

Female 0.0 14.3 85.7
Male 15.4 46.1 38.5
Total 10.0 35.0 55.0

Fig. 6. Miss-classification error as a function of the K hyper-parameter
for the Force (N) based classifier

Fig. 7. Miss-classification error as a function of the K hyper-parameter
for the magnetic flux (Oe) based classifier

classifier on the test set obtaining a miss-classification error
of 0.15794. The number of ”no hand” events incorrectly
classified was of 1 in a total of 8. The algorithm miss-
classified the medium handshake on the unanimated object 5
as a human handshake. The number of ”handshake” incorrect
classifications was of 2 in a total of 11. The algorithm miss-
classified two ”Weak” handshakes.

The results of the cross-validation procedure for the mag-
netic flux (Oersted, Oe) based classifier are shown in Fig.
7. The minimum miss-classification error was obtained for
K = 1, 3, 5. With K = 5 the miss-classification error on
the test set was of 0 due to the relatively small size of the
dataset.

VIII. CONCLUSIONS AND FUTURE WORK

We developed a platform for exploring human-robot hand-
shaking. By using a novel and state-of-the-art tactile sensor
we can accurately measure in real-time the force vector at
each contact point. This work can be divided into two parts
i) a human subject research of the preferable handshake grip
force and ii) training a classifier to detect if the handshake
was successful.

From the examination of the human subject data we realize
that by using fixed grip motions, the actual contact forces per-
ceived by the users will depend highly on the size and shape
of the hand of the human subject. Also, the limited number
of grip trajectories limits the analysis of the user’s preferred
grip force. To address these issues, in our future work we



will change the reference signal to be a set of contact forces,
instead of fixed joint positions, taking advantage of the real-
time feedback given by the tactile sensors. We will further
apply Reinforcement Learning methods to make the robot
autonomously explore and adapt the contact forces, without
restricting to a set of predefined handshakes, to give the most
natural and comfortable handshake for humans according to
the user feedback.

In the second part of our work, we achieved 100%
classification on our test dataset. This happens due to the
small size of the dataset and the nonexistence of objects with
a shape similar to a human hand. Nevertheless, the classifier
is fit to our purpose of automatic detection of a successful
handshake.

Our work so far has only focused on the force applied
to the contacts during the handshake. In order to obtain a
natural interaction, we will need to make the robot’s arm
move in a human-like way.

Previous work cannot be applied in a straightforward way
to our platform since it makes use of the forces measured
in each robot joint to synchronize with the human motion,
i.e. Neural Oscillators of Kasuga et al. [7] and the shake-
motion leading model of Yamato et al. [10]. Vizzy does not
currently report the torques applied to each joint but provides
very detailed information about the forces on the contacts
of the hand. We are exploring other approaches to arm
motion generation that may exploit the available tactile force
perception, e.g. movement primitives for force interaction.
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