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Abstract— This work proposes a hybrid Markov Decision
Process (MDP) based approach for planning and decision-
making in finite horizon, complex collaborative human-robot
object manipulation tasks. The approach is hybrid in the sense
that the full model state-space is defined by an object-centered
rule-base, while the model parameters are trained using an
apprenticeship learning approach, i.e., observing humans per-
forming the tasks.

Current research focus is on household scenarios that are
characterized by multiple alternating but recurring users and
tasks. The system is tailored to fit the specific requirements
as well as the limitations resulting from the chosen domain,
namely unskilled trainers and limited amount of data samples
with the core goals of easy system reconfiguration, continuous
personal adaptation, task fluency, reliability and traceability of
robot decisions.

I. INTRODUCTION

Robots are increasingly acting as collaborators in social
and industrial activities. With emerging dexterity and skill
set of robots, the range and flexibility of task sharing will
further evolve. Thus, it is a good hypothesis that human
expectations on robot task performance will increasingly
resemble those upon other humans they work with: robots
should assist without imposing additional cognitive work-
load to the human, while achieving a fluent task execution.

One major aspect is an anticipatory, reliable/robust (and
safe) robot behavior, i.e., an implicit understanding of human
intentions and of the common goal - based on the current
context (prior knowledge and constraints) and non-verbal
human cues and actions [1][2]. In a long-term or recurring
interaction, continuous adaptation to individual manners and
preferences based on implicit (e.g., facial expression) and ex-
plicit (e.g., utterances) feedback mechanisms and a growing
sample base is required.

A. Problem Setting

The focus of this work is on collaborative human-robot
manipulation scenarios with an alternating/interdependent
blended action structure or more colloquially speaking: as-
sisting in complex everyday tasks, where a ”helping hand”
is useful or required. For the scope of this research, collab-
oration takes place in a household setting with the average
(technologically unskilled) customers or co-workers (note:
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we expect that the approach is transferable to other domains
e.g., industrial assembly, where the addressed type of task
might be even more prominent). Collaboration is currently
limited to one collaborator at a time. However, preferences of
each individual should be respected by the robot. The tasks
to achieve have finite horizon and can be seen as subsets of a
more complex long-term planning system in order to achieve
a tractable hierarchical reasoning structure. The proposed
planner does not work on the trajectory or control level but
at the semantically higher level of the task network.

For the purpose of reasonable planning and decision
making, human and robot need a shared (mental) model of
the task, meaning that they have a similar understanding
of the situation, leading to similar decisions. The speci-
fied interaction type induces a strong object focus of the
addressed task set. Hence, the common ground is mainly
(clearly not entirely) defined by the consistent knowledge
about the effects of actions upon and amongst objects.

Consistent knowledge about objects and task constraints
can be formulated in an ontology or rule base, respectively.
From the ontology, the possible (parametric) state-space
of a task model can be enumerated [3]. Rules can limit
the parameter range of the model or certain states (i.e.,
deterministic action choice, task order, etc.).

The basic model needs to be configured for the specific
user/scenario combination. Usually, the collaborating persons
do not have the necessary capabilities to ”program” the robot
for a complex interaction task. Moreover, this would be
a very tedious and error prone process as person-specific
knowledge is not deterministic and not always directly ac-
cessible (yet sometimes irrational). There are not only inter-
person differences but also intra-person variations within the
task.

However, the missing belief about the human ac-
tion/reaction structure is implicitly available in the human
and can be drawn from the observation of human task exe-
cution (”expert” demonstrations). This fact has been proven
by research on apprenticeship learning [4]. [5] captures
the interaction dynamics in a mixed-observability Markov
Decision Process (MOMDP) for human-robot collaboration.
This is a very appealing approach for learning the charac-
teristics of a user centric task model (especially as long-
term learning approach in combination with reinforcement
learning methods) that are almost impossible to model in
a generally valid fashion. For this ”on-site configuration”,
our approach is based on the understanding of non-verbal
actions. Utterances and further explicit and implicit signals
might not be neglected but are out of scope (a POMDP



for multimodal human-robot interaction trained from human-
human demonstration can be found in [6]).

B. Domain-specific Constraints and Design Choices

If we consider a ”real world” setting, there are some
limitations that have to be respected when defining the model
generation process.
• The trainers, as opposed to the above specification of

apprenticeship learning, are no ”real” experts. They act
to the best of their knowledge (i.e., wrong instantiations
might occur). In addition to the unintentionally wrong
samples, people might try to intentionally feed the robot
with wrong behavior.

• There will be only a limited amount of training data
available.

These factors impact not only task configuration but espe-
cially the potential for learning reliable object attributes and
action effects. This is practically not possible. Therefore, it
is proposed that object (class) attributes are trained a priori,
e.g., in specialized facilities in a supervised fashion and used
for efficient model generation.

This predefinition of verified and consistent object knowl-
edge has another very practical implication considering the
”real world” domain. It addresses the problem of verification,
traceability of decisions and liability of the vendor, if the
robot causes any physical or economic damage (clean the
Teflon pan with steel wool because estimated reward is still
higher than not completing the task at all). It prevents the
robot from making fatal decisions due to wrongly learned or
estimated model parameters in the reward based approach or
due to the lack of completely well-defined goal states (”clean
the Teflon pan from the dirt” instead of ”clean the Teflon pan
from the dirt without scratching the coating”). It assures that
the robot will not ”believe” wrong instantiations of object
usage in a workflow, whether intentional or unintentional.

For the same reasons, it might be favorable to have
deterministic rules on task interdependencies/constraints for
(safety) critical sections of the workflow.

II. ILLUSTRATIVE EXAMPLE

Let us illustrate the scope of this work with a simple
example. Imagine a table with a knife, two different glasses,
a bottle, a bottle opener and a bread. It is easy to see that
there is a functional relation between the glass, the bottle
and the bottle opener as the functionalities are consistent
with respect to tasks already performed by almost every
human. As well, there is a relation between bread and knife.
There might be a relation between knife and bottle known
to humans, if the knife is used for opening the bottle, which
represents a misuse of the object and should be ignored by
the robot. So by simply knowing that the glass and the bottle
can be either used for pouring something in or out and the
bottle opener has the single functionality of opening a closed
bottle while the bread and knife can be neglected when one
of the aforementioned objects is used, the set of potentially
rewarding decisions within this task is already limited as
compared to the strict exploration approach.

However, it is not entirely predefined what the workflow
looks like in a specific setting. For example, the human might
prefer to have a certain drink in a certain type of glass and
whishes to have ice in the drink, which is stored in the
freezer compartment of the fridge. The robot has learned this
while staying in the specific location simply by observing the
humans performing the same tasks. Likewise, the robot might
have learned how long it takes the human to open a bottle
and thus is able to hand the glass in time without an explicit
demand. The robot knows that there is a constraint between
the duration of handing the glass and the duration of pouring
something into the glass that should not be violated.

In the case of pouring something into a glass, robot failure
causes some (more or less acceptable) annoyance to the
human. In a different workflow like e.g. mounting a shelf
together, the violation of the constraint between securing
the object on the wall and the collaborator having finished
the task of fixing it to the wall might cause severe injuries
and the temporal action constraint should be specified in a
deterministic way.

III. RESEARCH QUESTION
The question of how to capture user dependent task

specifics and environment specifics gets especially relevant,
when the system is used in a rather complex collaborative
manipulation like e.g. in strongly intertwined and inter-
dependent assembly tasks (for conciseness, we speak of
collaboration as the closest form of interaction, implying
direct interaction in working towards a common goal, using
the same limited set of resources and having strong and
immediate interdependencies between the actors’ actions).
Thus, we are specifically interested in providing and eval-
uating a methodology for planning and decision making in
this workflow type. The chosen example workflows should
reflect certain aspects, for which we want to evaluate whether
they can be covered by our ”hybrid” modeling approach:
• Have a task order that is not deterministic
• Have uncertain action effects of human actions
• Have a hidden object (e.g. in drawer, under lid)
• Have a safety critical constraint between two actions

(e.g. heavy weight will fall)
• Have a property changing action (e.g. from ”movable”

to ”not movable” or vice versa)
• Have an item with ”separating” or ”merging” character

e.g. knife and bread, glue and paper, lock and key
Due to the lack of a life-size humanoid robot, we have

to somehow abstract the example workflow either by using
simplified and easy to handle objects and evaluate with a
smaller robot or by shifting the experimental setup to some
Augmented Reality (AR) environment, where the human
handles real objects, while the virtual robot handles virtual
objects. The AR approach might produce a more realistic
sensation but requires the absence of actual physical inter-
action between objects within the workflows. In conjunction
with the functional evaluation of the model, we are intending
to conduct user studies to answer important human centric
questions like:



• Does apprenticeship learning alone (before adaptation
via reinforcement learning) provide an ”initial guess”
perceived as adequate - which amount of training data
is required?

• Can we achieve improved user comfort by raising task
fluency?

• Do the implicit reasoning capabilities perform well with
respect to user comfort/trust?

IV. PROPOSED SYSTEM SETUP

The goal of this work is to define which and how object
knowledge and task constraints can be formalized in a rule-
base/ontology and how this knowledge can be used for
the creation of a discrete MOMDP state-space. For action
recognition, a generic classifier for movement primitives
(characteristic approach-act-retract fashion motion) based on
skeleton and object track data and computationally efficient
relative features (e.g., distance, speed etc.) is developed.
The classifier is applied to human task execution for ap-
prenticeship learning. Figure 1 gives an overview of system
components and interplay. As a further benefit, primitives can
directly be mapped to the robot skill set on the semantic level
and parameterized from the observation. This high level task
can consequently be executed by the robot motion planner
and control. In future work, the model can be optimized
using reinforcement learning based on social signals (e.g.,
facial expression combined with body posture), utterances
or performance metrics (robot or human idle time, time to
completion, etc.) in the sense of a lifelong learning approach.

Fig. 1. System Overview

A. Mixed-observability Markov Decision Processes

A Partially Observable MDP is defined as a tuple
〈S,A,O, T, Z,R, γ〉 where S is the set of states of the world,
A is the set of actions an agent can execute, O is the set of
observations an agent can perceive, T is the probabilistic
transition function T (s, a, s′) = P (s′|s, a) which gives
the probability of ending in state s after executing action
a in state s, Z is the probabilistic observation function

Z(s′, a, o) = P (o|s′, a) which gives the probability of
receiving observation o when state s is reached via action
a, R is the set of expected rewards r(s, a) for each state-
action pair and γ is the discount factor that specifies how
much future rewards will be discounted. At each time-step,
the machine is in some unobserved state s ∈ S. The machine
selects an action a ∈ A, receives a reward r(s, a) and
transitions to (unobserved) state s′ ∈ S, where s′ depends
only on s and a. The machine receives an observation o
which is dependent on s′ and a. [7]. Extending the concept
of POMDPs with complete observability leads to Mixed-
observability Markov Decision Processes (MOMDPs), where
some state variables can be directly observed [8].

B. Object Ontology

In robotics, there is a wide range of problems to solve,
before an actual flexible collaboration can take place. One
key component for manipulation tasks is perception. The
robot must possess of a generic object recognition capability
in order to recognize unseen entities of an object class. It
must not only possess of the physical ability of grasping
the object (anthropomorphic gripper, payload, etc.) but also
know how to grasp it in a stable way, without damaging
it (sensitivity) and know about further handling constraints
(do not handle full cup upside down or tilted) important to
motion planning and control. Moreover, the robot has to be
aware of the object affordances, meaning here: what is the
intended object use and which effects will this induce. Most
of these topics are still subject to ongoing research. However,
for the purpose of this work, it is assumed that the robot is
able to recognize objects, can flexibly grasp them and has
substantial knowledge about limitations to object handling
as well as about affordances.

For task model generation, we address the concept of
affordances by specifying functional object properties. This
step is at the current point solely based on human background
knowledge and treated as generally valid. Likewise, the
information could e.g. be retrieved from the actual (size,
material) and perceived (which utility the object ”indicates”)
properties of an object [9] in conjunction with the recognition
step [10]. In this sense, we furthermore assume that perceived
affordances are linked to real affordances (”pushable” button
has a related functionality) and that affordances are indepen-
dent of the actors’ handling capabilities.

The specification of functional object properties can be
done on a class level and be inherited within the class
hierarchy or in a more specialized fashion on the entity level
(e.g. container can be used for content ← cup can be used
for liquid ← coffee cup can be used for coffee). Using more
prior knowledge and specialized object descriptions renders
the model less flexible but smaller and more reliable.

As a starting point, we define the attributes listed in Table
I in order to characterize an object and find the reduction of
the state-space.

The attribute description are deliberately kept at a seman-
tically high level (e.g. use/use with as a placeholder for
actual affordances) as they are intended for demonstrating



Attribute Values Assignment
Tangibility Tangible, intangible Mutually exclusive
Portability Movable,static Mutually exclusive
Structural Unity Entity, separable Mutually exclusive
Topological rela-
tions

Container, Multi-
Container, content,
none

Not exclusive

Utility Usable, usable with,
none

Not exclusive

TABLE I
SUGGESTION FOR ATTRIBUTE SET OF FUNCTIONAL OBJECT PROPERTIES

state space construction rather than actual action execution.
A more complete definition of object handling ontology can
be found in [12].

The attributes are chosen in order to define which primitive
actions can be performed upon the objects, which interac-
tions are viable, whether the objects can form new ”‘objects”
when combined (topological state combinations like ”‘pen
in box” or actual merging actions) in order to span up the
potential MOMDP state space. When objects are combined
(water + cup = water in cup), the combination object
”‘inherits” prominent properties of one of the objects. The
attributes and the effects of combining objects are explained
below:
• Tangibility: whether an object can be touched. Does not

capture, whether an object cannot be touched because it
is inside another object with a lid. Objects that require
a container are treated as intangible (e.g. handling of
fluids). Logical combination (OR) of tangibility prop-
erty of combined objects (water = intangible, water in
cup = tangible)

• Portability: whether an object can be changed in place.
Does not capture whether the object cannot be moved
due to the context e.g. if the object has been glued
or nailed to something. Logical combination (AND) of
portability properties of combined objects

• Structural unity: whether an object can be separated.
Captures whether an object can have several values in
same state (e.g. sugar can be on spoon AND/OR in
sugar dispenser whereas cup can be in cupboard XOR
on table). This property can vary in a context where
related objects with splitting or merging property are
present (knife, screwdriver, glue)

• Topological relation: whether an object is container or
content. Objects can be one, both or none. This value
also specifies whether a container can contain multiple
objects at the same time (multi-container) and defines
the possible object-in-object nesting depth of the state
space.

• Utility (relation): whether an object is for standalone
use or can be used in conjunction with another object.
Objects can be one, both or none. This is an abstracted
representation of further obligatory knowledge about
object utility that is used for simplicity reasons when
specifying the example object properties. Needs to
describe object state variations due to action effects

(on/off, open/closed)
As part of our research, we will try to find a formal nota-

tion of the above characteristics and enumerate a usable base
MOMDP for several sample scenarios. We will iteratively
refine the description methodology, unify the taxonomy over
the sample scenarios and try to gain insights on the necessary
depth of object descriptions.

C. Constraint Set

We are seeking for model adaptations representing spatio-
temporal variability and temporal relations between param-
eterized actions (like e.g. achievable with Interaction Proba-
bilistic Movement Primitives [13] on the trajectory level or
by using discrete actions with continous parameter vectors
[14] which permits reinforcement learning on parameter level
with reward based on task performance metrics or human
factors like task engagement [11]).

In regular workflows, parallel actions will occur, as an
action is mostly extended over some period of time. This
means, an action might start/end after a certain time span
preceding/following the coworker action. As there is no
explicit observation to trigger the state change, the duration
since the last action started might be treated as a parameter
of the (idle) action. Likewise, state changes without an
explicit action requirement can occur. For this purpose, we
introduce ”resume” action as state change on coworker action
with persisting own action, which can be any of the action
possibilities specified in Section IV-D including ”idle” action
(transitions to same state or changes state on coworker
action)

Principally, we can generate beliefs about action interde-
pendencies from recurring observations in an unsupervised
fashion and capture them in the probabilistic model/reward
structure, where there is no significant risk associated with
breaching the action dependencies (e.g. forget to put the
saucer in place before the cup or do not put a placemat on
the table before the plate) due to the (at least initial) lack of
a high-confidence estimator.

For safety reasons, we want to provide a means of injecting
critical constraints between actions using a formal descrip-
tion. In essence, this approach will have to assume and
impose deterministic behavior in some parts of the decision
making process (shelf must not be released until work is
definitely done, or it will fall). Thinking this a bit further (and
considering current means of handling safety critical states
in industrial applications) it might even be a good choice
to define different stages of acknowledgement mechanisms
according to the risk assessment (i.e., do not rely on own
belief whether work is done, ask for it explicitly and wait
for vocal or physical acknowledgement) or (even in uncritical
sections) according to the current trust level of the user.

As the action precondition types, we adopt the formalism
of Permanent, Enabling and Ordering constraints proposed
by [15] (see Figure 2).
• Permanent preconditions must be met before and must

be maintained during execution (Pouring task, Securing
task)



• Enabling preconditions must be met immediately before
the execution but can change during execution

• Ordering constraints must have been met at some point
before the action (Switch of power before changing a
light bulb)

Fig. 2. Temporal precondition types between actions: Permanent (case 1),
Enabling (case 2), Ordering (case 3) [15]

The preconditions could e.g. be specified as Temporal
Logical Formulas that have to be satisfied. Admittedly,
judging these situation will require exhaustive sensing and
reasoning capabilities and universal background knowledge
regarding safety critical task constraints for not having to
hand tailor the entire workflow. We do currently not have an
answer to the question how this online risk assessment can be
performed or formulated in a generally valid fashion, as risk
is often highly dependent on the current environment. How-
ever, we think that providing a methodology for respecting
those constraints and allow model checking for safety critical
sections is especially important in human-robot collaboration
tasks.

D. Movement and Action Primitives

A generic action model is required in order to avoid
exhaustive training of classifiers and permit mapping to
parametric robot skills reflecting the same action. The idea
is to use action primitives and a grammatical description of
how these primitives can be combined, graphically depicted
in Figure 3. According to [16], actions on objects may
be described by a general approach-act(use)-remove cycle.
Thus, it is possible to identify all human movements and
trajectories to be instances of the same primitive as long as
they induce the same effect on the object (as specified by
the action set as ”MOVE”, ”HOLD”, ”IDLE”, ”USE”/”USE
WITH”). To achieve this goal, a suitable feature set and
generic classifiers in order to determine the primitives have
to be developed.

The input to the ”configuration” step is an RGBD stream
from Microsoft Kinect. The camera is set up in some distance
(app. 2.5m) to the scenery, reflecting the robot watching
humans perform the task. Skeleton streams using the hand
track and tracks of all present objects are computed. K-d tree
clustering is performed in order to obtain object regions and
the COG of each object is computed. Filtering and fusion of
object and hand locations is done with an Unscented Kalman
Filter at a sample rate of 100 ms. From hand tracks and tracks
of all present objects, a couple of simple, computationally
inexpensive features (velocity, relative velocity, distance,

Fig. 3. Graphical depiction of object manipulation transition model

etc.) can be computed for each hand-object and object-object
pair. A representation of the overlayed velocity profiles and
the respective hand/object distance can be seen in Figure 4.
For the human eye, sequences in the interaction streams, like
the characteristic bell shaped velocity profiles, are clearly
recognizable. On this feature set, a classifier should be
trained using common machine learning techniques (e.g.
Random Forest). For validation and independent evaluation
of the model building methodology, input streams will be
manually annotated.

Fig. 4. Hand/object velocity profiles (upper) and hand/object distance
evolution (lower)

E. Model Generation

From the object ontology, we can enumerate the complete
MOMDP state-space and associate a set of actions and
most likely observations (human action, (topological) object



states) according to the restrictions on what can be done with
the objects like:
• Tangible objects can be grasped/touched
• All grasped objects can be released
• All movable objects can be moved/held
• All content objects can be ”put” into a related object
• All usable objects can be ”used” and/or ”used with”

another object, related effects
• Idle and Resume actions
If, in contrast to our assumption the robot (or human) is

not able to perform certain actions, or is especially suited for
certain tasks, this might be reflected in the action/observation
set. After this step, the potential model space to explore
and the possible task orders are very large, if no further
restrictions are made. The configuration of the model is based
on the observation of interaction sequences and primitive
actions as explained in Section IV-D from which we can
try to derive the reward function of the model (Inverse
Reinforcement Learning).
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