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Abstract— In a new environment, an artificial agent should
explore autonomously and exploit tutoring signals from human
caregivers. While these two mechanisms have mainly been
studied in isolation, we show in this paper that a carefully
designed combination of both performs better than each sep-
arately. To this end, we propose an autonomous agent whose
actions result from a user-defined weighted combination of two
drives: a tendency for gaze-following behaviors in presence
of a tutor, and a novelty-based intrinsic curiosity. They are
both incorporated in a model-based reinforcement learning
framework through reward shaping. The agent is evaluated
on a discretized pick-and-place task in order to explore the
effects of various combinations of both drives. Results show
how a properly tuned combination leads to a faster and more
consistent discovery of the task than using each drive in
isolation. Additionally, experiments in a reward-free version
of the environment indicate that combining curiosity and gaze-
following behaviors is a promising path for real-life exploration
in artificial agents.

I. INTRODUCTION

Mental development for a situated agent includes the
capacity to actively discover how to achieve various tasks in
an unknown environment. Young children demonstrate very
early the inclination to explore their surroundings, trying to
interact with objects within their reach. In artificial systems,
these behaviors are the subject of Artificial Curiosity. Taking
inspiration from trial-and-error exploration, some of the
existing work is built on the Reinforcement Learning (RL)
framework [1]. Such solutions, called intrinsically motivated
reinforcement learning (IMRL) [2], rely on attractive salient
events [3] or search to maximize metrics of their environment
model [4]. A limitation of the RL framework for autonomous
environment exploration is the notion of external reward.
Indeed, such rewards are most commonly human-engineered
task-specific functions [5] that cannot be defined in the es-
sentially task-independent exploration problem, nor redefined
for every new environment.

When in presence of a caregiver, infants are also able
to incorporate social stimuli into their exploration behavior
(following a tutor gaze, copying gestures, ...), long before the
acquisition of an effective language-like high-level commu-
nication channel. In this context, social signals can favor task
exploration and guide it towards the expectations of a tutor.
Such ability to exploit skills and knowledge from humans
in artificial systems is the subject of Interactive Machine
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Learning (IML) [6]. IML algorithms can be organized along
a scale between focusing entirely on human guidance [7]
versus relying only on autonomous exploration [8]. Between
those extremes, some combination of human guidance and
autonomous exploration have proven efficient, for instance
to learn object affordances [9].

The present work pushes the latter approach further by
proposing a generic RL system where the balance between
the motivation to explore and the motivation to interact is
easily tunable, and shows that the right proportion of each
leads to increased performances on task-discovery and task
execution in a new environment. To this end, we propose
an agent whose actions respond to a user-defined weighted
average of two incentives: artificial curiosity on one side, and
a tendency to follow the gaze of a tutor on the other side.

The artificial curiosity component is based on the intrin-
sically motivated RL algorithm of TEXPLORE-VANIR [4].
The gaze-following component, which is considered essential
to learn to interact [10], [11], is implemented through the
addition of gaze direction in the TEXPLORE-VANIR agent
and the use of a new reward shaping mechanism that entices
the agent to match its gaze with the tutor’s.

After presenting TEXPLORE-VANIR in Section II, our
method and the simulated task are described in Section III.
Results are presented in Section IV. First, we show that
with a simple gaze policy for the tutor, the right weights for
both curiosity and gaze-following behaviors lead to improved
performances for task discovery and execution. Furthermore,
we show that our agent can consistently complete the task
in reward-free environments. Finally, Section V discusses
the originality of this work in comparison with the existing
literature, gives potential directions for future work and
concludes.

II. BACKGROUND: TEXPLORE-VANIR

The TEXPLORE-VANIR algorithm is an improvement of the
TEXPLORE model-based reinforcement learning framework
[12] that includes additional intrinsic motivations.

A. TEXPLORE

The TEXPLORE algorithm follows a typical model-based
RL scheme, where the environment is modeled as a factored
Markov Decision Process (MDP). An MDP consists of a set
of states S, a set of actions A, a reward function R(s,a) and a
transition function T (s,a,s′). The agent receives the reward
R(s,a) upon taking action a in state s and ends up in state
s′ with probability P(s′|s,a) = T (s,a,s′). The agent seeks to
determine the policy π? : s 7→ a that maximizes the expected



discounted total reward over the agent lifetime. Defining the
state-value function Qπ(s,a) as an estimate of the expected
future reward obtainable from (s,a) following policy π , Q? =
Qπ?

solves the Bellman equation [1] and

π
?(s) = argmax

a
Q?(s,a). (1)

Being model-based, the TEXPLORE agent learns models of
R and T from experience to simulate multiple courses of
actions and iteratively refine its Q-table of Q(s,a).

In TEXPLORE, model learning is seen as a self-supervised
problem, with the current factored state s = (s1, . . . ,sn) and
action a as inputs, and the next state s′ and the obtained
reward r as output. The factorization property of the model
enables learning separate predictions for each state features
si (and for the reward) and recombine them thereafter into a
full predicted state. This is only valid under the assumption
that all features transition independently. In TEXPLORE, each
separate feature predictor is a random forest comprising five
univariate C4.5 decision trees, trained on different subsets of
the experiences. Tabular models of the reward and transitions
are re-built from the newly trained predictors when outdated,
and are queried by the planner during simulations with
the UCT algorithm [13]. These simulations provide action-
reward-state sequence at ,rt+1,st+1, . . . ,rt+M,st+M , where M
is the maximum simulation depth. All along the simulated
sequence, Q-value updates for state-action pair (st ′ ,at ′) write:

Q(st ′ ,at ′)
αUCT←−−− (1−λ )

M+t−t ′

∑
i=1

λ
i−1×[(

i

∑
k=1

γ
k−1R(st ′+k−1,at ′+k−1)

)
+ γ

i max
a′

Q(st ′+i,a
′)

]
. (2)

The notation x α←− y is short for x← (1−α)x +αy, λ is
the eligibility traces parameter and γ is the discount factor.
αUCT is a learning rate specific to the UCT algorithm [12]. In
TEXPLORE, R(s,a)= rpred(s,a) as rewards only comprise the
reward predictions by the reward model model given input
state and action.

B. Novelty reward in TEXPLORE-VANIR

In TEXPLORE-VANIR, the reward R in (2) is enriched by
two intrinsic motivations favoring 1) high-uncertainty areas
of the environment and 2) high-novelty areas of the state-
action space. The present work only uses the second one
based on novelty.

For a given state-action pair (s,a) = (s1, . . . ,sn,a), this
additional NOVELTY-REWARD N(s,a,V ) is based on the
normalized distance between (s,a) and the set V of known
state-action pairs kept up to date. It writes:

N(s,a,V ) = argmin
(sV ,aV )∈V

‖(s,a)− (sV ,aV )‖1 . (3)

III. METHODS

We augment the TEXPLORE-VANIR algorithm in two
ways: 1) the agent’s action achievements are now conditioned
to their coordination with its gaze, and 2) a second reward

Algorithm 1 TEXPLORE-VANIR with guidance by gaze-
following

1: Input: An actor, a tutor and an environment
2: Initialize Q(s,a) = 0, ∀s,a
3: Environment model M ← empty model
4: Starting state s← s0, known states V ←∅
5: πtutor← predefined policy, tutor state σ ← σ0
6: loop
7: a← argmaxa′Q(s,a′)
8: Actor takes action a, observes r,s′

9: Tutor updates gaze σ following πtutor(s′) .

10: TRAINPREDICTORS(〈s,a,s′,r〉,M)
11: V ←V ∪ (s,a)
12: σobs← σ .
13: for all state s, action a do
14: T (s,a),R(s,a)← UPDATEENVMODEL(s,a,M)
15: R(s,a) += N(s,a,V )

16: R(s,a) += J(s,σobs) .
17: end for
18: UCTPLANNING(Q,T,R)
19: s← s′

20: end loop

shaping mechanism is added, in order to favor states in which
the agent gaze follows the tutor’s.

A. Gaze following motivation

To fulfill the action-attention coordination constraint, we
augment the agent state s with gaze information so that we
now have s = (senv,sgaze) where senv is comprised of pure
environment observations from the agent while sgaze is its
gaze position. The list of possible actions for the agent in
state s = (senv,sgaze) is now conditioned to sgaze. The next
section provides details on these conditions for our specific
experimental framework.

To induce gaze-following behaviors, a reward J is given
if the agent’s gaze matches the tutor’s: for a given state
s = (senv,sgaze), and a given observation by the agent of the
current tutor gaze σobs, we write:

J(s,σobs) = δ (sgaze,σobs) (4)

where δ is the Kronecker symbol.

B. Algorithm

The final algorithm structure is shown in Alg. 1, where
additional steps with respect to TEXPLORE-VANIR are high-
lighted. Lines 7-12 comprise building experience that in-
cludes the tutor’s reactions and training the feature predictors
from this experience. Lines 13-17 perform the tabular models
updates from the predictors. The reward computations thus
include incentives for novelty and gaze-following behaviors
by shaping R in (2) with (3) and (4), writing:

R(st ′+k−1,at ′+k−1) = rpred(st ′+k−1,at ′+k−1)

+νN(st ′+k−1,at ′+k−1,V )

+µJ(st ′+k−1,σ
obs
t ),

(5)



Fig. 1. Left: the agent model is an extension of the classical model-based reinforcement learning scheme, where the tutor behavior is explicitly taken
into account to build experience. The agent exploits the accumulated experience to train predictors, from which the tabular environment model is built.
Novelty and gaze-based motivations modulate the tabular reward model to favor specific state-action pairs. The agent obtains the best action by computing
Q values from simulations based on the environment model. Right: The environment is a 5x5 grid with two sources of red and blue blocks (the cubes)
and a box of each color. The agent is defined by its position (the hand) and its actions need to be coordinated with its gaze (its eye). The tutor only exists
through its gaze, and he looks where it is best for the agent to also look at.

where ν and µ are tunable parameters that determine the
importance granted to novelty and gaze-following behaviors
respectively. It is important to note that R(st ′ ,at ′) relies on
σobs

t for all t ′ considered in (2): the tutor gaze is not part
of the agent state and thus no prediction is made about its
future. Thus updates at simulated step t ′ use the value σobs

at step t.
Finally line 18 corresponds to the UCT-PLANNING al-

gorithm where the Q-table is updated following (2) and
(5). Figure 1 (left) shows the full model-based learning
framework with explicit use of the tutor gaze signals to
modulate the tabular reward model.

C. Experiments

The algorithm is evaluated on a virtual pick-and-place task
in a 5x5 grid world environment, shown in Fig. 1, right. Two
infinite sources of blocks are located in two corners of the
grid, while two boxes are located in the remaining corners.
The agent must go to a block, pick it up, carry it to a box and
place it inside. The agent (the hand in Fig. 1) is positioned
at the center of the grid at the start of an experiment. The
agent must repeatedly put blocks in a box. The positions of
the blocks and boxes do not change over time or over trials.
The agent state consists of 13 different features: its xa and
ya coordinates in the room, whether it carries a block, the xg
and yg coordinates of its gaze, and the xi and yi coordinates
of all four objects in the grid.

Ten actions are available: the agent can move one step in
each cardinal direction, look at all four objects, pick a block
and put one in a box. Apart from looking at an object which

is always possible, an action realization is conditioned to the
environment and to the agent gaze. A move cannot be made
against a wall, and the move must be in the direction of
the agent gaze. To be successful, the pick action (resp. put
action) requires the agent to be located at a block position
(resp. a box position), while holding nothing (resp. holding
a block); its gaze must be directed towards the block (resp.
the box). All actions are deterministic and when one is not
successful, the agent state remains unchanged.

The tutor’s policy in this environment is fixed. Each time
the agent ends up holding nothing during exploration, the
tutor picks a source of blocks, choosing randomly. Then the
tutor keeps looking at the source until the agent takes a block
from it. When the agent picks a block, irrespective if it is the
one the tutor looked at, the tutor chooses a box at random
and looks at it until the agent has placed the block in it. This
policy is an oversimplification of natural gaze mechanisms,
based on object-directed visual fixation and does not aim at
reproducing natural interaction behaviors.

The parameters λ , γ and M are those of TEXPLORE-VANIR
and remain constant in all experiments: λ = 0.1, γ = 0.9
and M = 100. Q-values are initialized uniformly at random
around zero. All experiments consists of 30 trials starting
in the exact same conditions (parameters, starting position,
etc.). Each trial comprises 800 learning steps. In addition to
the accumulated reward, we store for each action a taken in
state s the proportions of each of the three rewards in Q(s,a).



Fig. 2. Accumulated reward versus number of steps taken, averaged over 30
trials, with and without a tutor (µ = 0 or µ = 1) for different parameters ν .
The incentive to follow the gaze of the tutor clearly leads to better policies.
Performances are best for µ = 1 and ν = 10.

IV. RESULTS

The present model was first designed to measure the
impact of the relation between the weight of the incentive
for gaze-following and that of curiosity on task discovery
in a new environment. In a second phase we evaluate our
full motivation system in a reward free version of the
environment.

A. Task-oriented exploration

First, the contribution of the tutor during reinforcement
learning is examined. Performances of the agent on the pick-
and-place task with and without taking the tutor gaze into
account (µ = 1 and µ = 0) are compared. As we are mainly
interested in guiding exploration, we focus on the first few
hundreds iterations. Fig. 2 plots the accumulated rewards
versus the number of steps taken by the agent, averaged
over 30 trials. The figure shows results for different intrinsic
motivation weights: µ = 0 and µ = 1 on one side, ν = 0,
ν = 1, ν = 5 and ν = 10 on the other. Experiments where the
agent takes the tutor gaze into account appear more efficient
at discovering the task than their counterparts with intrinsic
motivation only. Differences between results for ν = 5 and
ν = 10, be it with or without a tutor, are not meaningful on
this plot and require further investigation.

Figure 2 shows different performance gains for a constant
appeal to joint attention (µ = 1) depending on the importance
granted to curiosity through ν . This suggests a coupling
between intrinsic motivation and gaze-following, which we
analyze in Fig. 3. To this end, we make ν vary between
0 and 20 with a fixed µ = 1 and focus on the end reward
accumulated at step 800 only. For each value of ν , Fig. 3
shows on a vertical line the distribution of results obtained
over the 30 trials. To account for trials giving identical

Fig. 3. Distributions of the accumulated reward at step 800 over the 30
trials for different values of ν , each corresponding to a vertical line, for
a fixed µ = 1. On each vertical, the 30 trial results are binned in the six
[0,1000], [1000,2000], ..., [5000,6000] intervals. Each bin is then displayed
as a circle at height equal to the average value of the bin and of size
proportionate to the number of results in the bin. The best result in term of
both accumulated reward and consistency over trials is obtained for ν = 10:
few low reward results and many high reward results.

results, these 30 values are binned in intervals [0,1000],
[1000,2000], ..., [5000,6000] and each bin is shown as a
circle centered at the average value of the bin, and of size
proportionate to the number of elements in the bin. For
instance, with no curiosity at all (ν = 0, on the left), most
trials have not discovered the task nor obtained any reward,
hence the large dot on the no-reward horizontal axis.

A significant proportion of the trials for ν ≤ 10 still obtain
few to no reward at all, as illustrated by a remaining circle
close to zero; on the other hand, the majority of other
trials reach high end results as shown by large dots for
high intervals. Between these two behaviors lie very few
samples. These results indicate that either the agent discovers
the task early enough and then exploits its discovery to
reach a high final accumulated reward, or it remains stuck
in a form of inefficient exploration and receives no reward
at all. The absence of intermediate end-result (few values
between 1000 and 4000 for 0.5 ≤ ν ≤ 10 in particular) is
a consequence of this alternative. If we evaluate the chosen
parameters based on consistency over trials and on the actual
800 step accumulated reward, performances are best for
ν = 10 and µ = 1. The 10/1 ratio between both motivations
approximately compensates the fact that the bonus obtained
from novelty is always rather small compared to that from
the gaze (the right side of (3) is rarely close to 1).

The observed behavior is easily interpreted in the light
of the role played by each reward mechanism during ex-
ploration. To measure these roles, we use the proportions
of each reward/motivation mechanism inside the Q-value
corresponding to the chosen action at each iteration, which



Fig. 4. Importance of each reward mechanism in action-selection during
the first 800 steps, for the two combinations [µ = 1,ν = 0.1] (left) and [µ =
1,ν = 10] (right). The evolution of the proportion of each member of (5) in
the Q-value defining the next action is displayed. Successful combinations of
motivations (right) enable novelty to play the main role at the very beginning
and give way to environment rewards when they are discovered, while the
tutor guidance impacts the agent with a continuous moderate intensity. An
insufficient curiosity leads to following the tutor gaze only (left).

we store all along the trials. They indicate how much each
reward/motivation mechanism is responsible for the action
of the agent. The evolution of these proportions, shown in
Fig. 4 on the left for two very different behaviors (weak
versus strong curiosity), indicates that low performances on
the left of Fig. 3 correspond to the agent only looking
where the tutor looks, without searching to discover the
environment and with growing but weak interest for the task.
The decrease in performance observed for high values of ν

stems from the opposite behavior where the agent’s goal is
the complete discovery of the environment, independently
of the task or the tutor. The benefit of this strategy is
that it almost guarantees random task execution and avoids
no-reward trials. A successful trade-off between curiosity,
joint attention and external reward exploitation is reached
for ν = 10 (Fig. 4, right): novelty-based motivation appears
critical at the beginning of learning and then gives way to
external reward signal discovered, while the tutor acts as a
permanent discrete guidance. This combination leads to a
more effective task-oriented exploration of the environment
than any of the drives taken separately.

B. Reward-free environments

Now the reward obtained from the environment is only
used for evaluation purposes and learning only relies on the
two last terms of (5). The agent is only driven by curiosity
and the tutor gaze. Fig. 5 shows the impact of the attention-
based guidance on the accumulated reward corresponding
to the amount of blocks put inside boxes over time. With
curiosity only, the agent achieves the task by chance on rare

Fig. 5. Evolution of the reward accumulated for putting blocks in boxes
over 800 steps (median and 25-75 interquartile range), for different combi-
nations of gaze-based and curiosity-based motivations. Proper combinations
of curiosity and interaction drives lead to the task being achieved regularly
without using dedicated external rewards.

occasions over the 800 steps. By contrast, in presence of a
tutor, it discovers the task earlier and more importantly, also
achieves the task expected by the tutor with regularity. This
ability is obtained through the combination of the two reward
mechanisms and the attention-action coordination constraint:
schematically the agent attention is first driven to the parts
of the state space indicated by the tutor; because of the
action-attention coordination constraints, the agent itself is
then more likely to actually end up in those states the tutor
deems useful; finally, once in those potentially rewarding
states, the curiosity mechanism ensures that the agent will
find the right action, among those it has not tried yet.

The plot also shows that the binary behavior described
in the previous section has been reduced. Indeed, the 25-
75 interquartile ranges drawn for each experiment over
the 30 corresponding trials indicate that there is far less
uncertainty in the end-results without external rewards. Also,
the coupling between parameters ν and µ still exists without
reward: [ν = 5,µ = 1] performs significantly better than
both [ν = 10,µ = 1] and [ν = 1,µ = 1] as shown by the
non-overlapping interquartile ranges. A comparison with
Fig. 2 shows that learning without external reward logically
remains less efficient than with it. This is coherent with the
earlier explanation of task successes: with an external reward
obtained when the goal is reached, the agent can propagate
it backward in its sequence of actions, so that it knows how
to act in each state, which is not possible without reward
propagation.

V. CONCLUSION

In this paper, we presented a generic extension of the
RL framework to combine autonomous exploration out of



curiosity, and guidance from a tutor based on gaze-following.
Contrary to a number of works in IML, such as RL with
on line human-defined rewards [14], our solution does not
consider interaction as a secondary tool to fulfill a primary
objective. Instead, interaction is seen as a goal in itself,
and is favored by a dedicated reward mechanism. Also,
interaction takes a bottom-up approach and relies on a low-
level gaze-based social cue as in other works [15]. Previous
studies following this line of thought have faced difficulties
in interpreting such social cues, as it adds complexity to the
problem [16], [17], [18]. Our solution tackles the issue by
converting gaze direction into an exploitable guidance signal
through reward shaping in the RL framework.

Results show that adding a tutor gaze direction as guidance
to a curious RL agent leads to improved exploratory abilities,
provided that curiosity and motivation for gaze-following are
combined in correct proportions. When such a successful
balance is reached, the tutor gaze acts as a constant and
moderate push towards profitable states, while curiosity ap-
pears decisive at the beginning of exploration, and fades as it
goes on. With this behavior, the agent performs better at task-
discovery and execution than other combinations of curiosity
and guidance by tutoring signals, or without guidance at all.

As the few models that have tackled the issue of au-
tonomous reward-free environment discovery, our curiosity
mechanism mainly relies on the agent evaluating the accu-
racy of its internal model of the environment [19], [20]. This
evaluation then serves as a basis for directing exploratory be-
havior. Our work demonstrates that the balanced exploitation
of a guidance signal is also an effective solution to speed
up task discovery and regular execution in such reward-free
environments.

Future work should further elaborate the gaze following
mechanism which is hitherto oversimplified: the tutor gaze
direction is given whereas it should be detected. This causes
the agent to follow its tutor too easily instead of learning
gaze following [21]. In the end, we would like to allow a
tutor to teach an agent a specific task without using any
external reward signal. Steps in this direction will result
from integrating automatic goal-discovery [22] and tutor
intentions inference [23]. Both would enable subgoal-based
rewards and competence-based motivations [24] that would
speed up exploration and improve guidance efficiency. Such
work should be performed in larger state spaces so as to
evaluate the scalability of the presented algorithm and its
performances with very sparse rewards.
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