Silvia Rossi

Multiagent Interactions

Lezione n. 8

Corso di Laurea:
Informatica
Insegnamento:
Sistemi
multi-agente

Email:

silrossi@unina.it

A.A. 2014-2015

Distributed Rational Decision Making -non-cooperative Game Theory

(W: 3, MAS: 3.1, 3.2)

Game theory is the mathematical study of interaction among independent, self-interested agents.
noncooperative game theory What does it mean to say that an agent is selfinterested?

- not that they want to harm other agents
- not that they only care about things that benefit them
- that the agent has its own description of states of the world that it likes, and that its actions are motivated by this description
-Focus on decision-making where each player's decision can influence the outcomes (and hence well-being) of other players.
- Each player must consider how each other player will act in order to make its optimal choice: hence strategic considerations
- If all players have the same preferences, then game theoretic analysis is essentially redundant: there is common purpose.
- If a system has one designer, or is "owned" by a single individual, we can usually assume common purpose.

What is a Game?

-A "game" in the sense of game theory is an abstract model of a particular scenario in which self-interested players interact.

- Abstract in the sense that we only include detail relevant to the decisions that players make:
- leads to claims that game theoretic models are "toy"
- aim is to isolate issues that are central to decision making.
- Game theory origins: study of parlor games (e.g., chess)
- such games are useful for highlighting key concepts
- but the term "game" conveys something trivial :-(

Non cooperative vs cooperative games

-Game theory is usually sub-divided into non-cooperative and cooperative versions.

- Non-cooperative game theory is bigger and better-known:
- it concerns settings where players must act alone.
- Solution concepts in non-cooperative game theory relate to individual action.
- Cooperative game theory is concerned with settings where players can make binding agreements to work together, allowing for teamwork, cooperation, joint action.

Utility theory:

- quanties degree of preference across alternatives
- understand the impact of uncertainty on these preferences
- utility function: a mapping from states of the world to real numbers, indicating the agent's level of happiness with that state of the world
- Decision-theoretic rationality: take actions to maximize expected utility.

Assumptions:

- humans are rational beings
- humans always seek the best alternative in a set of possible choices
- Why assume rationality?
- narrow down the range of possibilities
- predictability

Utility Theory based on:

- rationality
- maximization of utility
- may not be a linear function of income

It is a quantification of a person's preferences with respect to certain objects.

Ufillies andelpeterences

Agents are assumed to be self-interested: they have preferences over how the environment is
Assume we have just two agents: $A g=\{i, j\}$

Assume $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots\right\}$ is the set of "outcomes" that agents have preferences over
We capture preferences by utility functions:
$u_{i}=\Omega \rightarrow \mathrm{R}$
$u_{j}=\Omega \rightarrow \mathrm{R}$
Utility functions lead to preference orderings over outcomes:
$\omega \geq_{i} \omega^{\prime}$ means $u_{i}(\omega)>=u_{i}\left(\omega^{\prime}\right)$
$\omega>{ }_{i} \omega^{\prime}$ means $u_{i}(\omega)>u_{i}\left(\omega^{\prime}\right)$

Utility is not money (but it is a useful analogy) Typical relationship between utility \& money:

Il processo di scelta razionale

Il soggetto deve essere in grado di:

Determinare l'insieme di scelta (le azioni);
Una relazione che lega le azioni alle conseguenze;
Ordinare tutte le conseguenze possibili; Selezionare l'azione migliore.

1. Scelta in condizioni di certezza: ad ogni azione e' associata una ed una sola conseguenza.

Nell'ambito del processo di scelta razionale questo problema diventa banale una volta che il decisore abbia definito l'insieme delle scelte ed ordinato tutte le possibili conseguenze.
2. Scelta in condizioni di incertezza: ad ogni azione sono associate piu' conseguenze, in base ad una distribuzione di probabilita' data.

Se la probabilita' e' oggettiva ->> SCELTA IN CONDIZIONI DI RISCHIO
Se la probabilita' e' soggettiva ->>SCELTA IN CONDIZIONI DI INCERTEZZA

PROBLEMA. Prendere una decisione in cui le conseguenze sono incerte e tale incertezza è quantificabile in modo non ambiguo.

L'incertezza dipende dalla presenza di più di uno stato di natura.
Si assume che le probabilità con cui i vari stati si verificano sia nota.
3. Scelta in condizioni di interazione strategica: ad ogni azione sono associate piu' conseguenze, ma ora cio' dipende dalle scelte effettuate da altri soggetti razionali.

Friends and Enemies

Alice has three options:

- going to the club (c),
- going to a movie (m),
- or watching a video at home (h).

If she is on her own, Alice has a utility:

- $u(c)=100$,
- $u(m)=50$,
- $u(h)=50$.

Bob is Alice's nemesis;

- If Alice runs into Bob at the movies, she can try to ignore him and only suffers a disutility of 40;
- If she sees him at the club he will pester her endlessly, yielding her a disutility of 90.
- Bob prefers the club: he is there 60% of the time, spending the rest of his time at the movie theater.

Friends and Enemies

Carol is Alice's friend.

- Carol increases Alice's utility for either activity by a factor of 1.5 (after taking into account the possible disutility of running into Bob).
- Carol can be found at the club 25% of the time, and the movie theater 75\% of the time.

List Alice's utility for each possible state of the world...

Alice's expected utility for c :
$0.25(0.6 * 15+0.4 * 150)+0.75(0.6 * 10+0.4 * 100)=51.75$
Alice's expected utility for m :
$0.25(0.6 * 50+0.4 * 10)+0.75(0.6 * 75+0.4 * 15)=46.75$
Alice's expected utility for $\mathrm{h}: 50$.

Alice prefers to go to the club (though Bob is often there and Carol rarely is), and prefers staying home to going to the movies (though Bob is usually not at the movies and Carol almost always is).

Why utility?

Why would anyone argue with the idea that an agent's preferences could be described using a utility function as we just did?
why should a single-dimensional function be enough to explain preferences over an arbitrarily complicated set of alternatives?

Why should an agent's response to uncertainty be captured purely by the expected value of his utility function?

Preferences Over Outcomes

If o1 and o2 are outcomes

$o_{1} \succeq o_{2}$ means 01 is at least as desirable as 02 .

- read this as "the agent weakly prefers 01 to o2"
$o_{1} \sim o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \succeq o_{1}$.
- read this as "the agent is indifferent between o1 and o2."
$o_{1} \succ o_{2}$ means $o_{1} \succeq o_{2}$ and $o_{2} \nsucceq o_{1}$.
- read this as "the agent strictly prefers o1 to o2"

An agent may not know the outcomes of his actions, but may instead only have a probability distribution over the outcomes.

Definition (lottery)
A lottery is a probability distribution over outcomes. It is written $\left[p_{1}: o_{1} ; p_{2}: o_{2} ; \ldots ; p_{k}: o_{k}\right]$
where the o_{i} are outcomes and $p_{i}>0$ such that

$$
\sum_{i} p_{i}=1
$$

The lottery species that outcome o_{i} occurs with probability p_{i}.
We will consider lotteries to be outcomes.

Definition (Completeness)

A preference relationship must be defined between every pair of outcomes:

$$
\forall o_{1} \forall o_{2} o_{1} \succeq o_{2} \text { or } o_{2} \succeq o_{1}
$$

Preference Axioms-Transitivity

Denition (Transitivity)

Preferences must be transitive:

$$
\text { if } o_{1} \succeq o_{2} \text { and } o_{2} \succeq o_{3} \text { then } o_{1} \succeq o_{3}
$$

This makes good sense: otherwise

$$
o_{1} \succeq o_{2} \text { and } o_{2} \succeq o_{3} \text { and } o_{3} \succ o_{1}
$$

An agent should be prepared to pay some amount to swap between an outcome they prefer less and an outcome they prefer more

Intransitive preferences mean we can construct a "money pump"!

Preference Axioms

Denition (Monotonicity)

An agent prefers a larger chance of getting a better outcome to a smaller chance:

$$
\begin{aligned}
& \text { If } o_{1} \succ o_{2} \text { and } p>q \text { then } \\
& \qquad\left[p: o_{1}, 1-p: o_{2}\right] \succ\left[q: o_{1}, 1-q: o_{2}\right]
\end{aligned}
$$

Let $\operatorname{PI}\left(o_{i}\right)$ denote the probability that outcome o_{i} is selected by lottery 1 .

For example, if $I=\left[0.3: 0_{1} ; 0.7:\left[0.8: 0_{2} ; 0.2: 0_{1}\right]\right]$ then $\mathrm{Pl}\left(\mathrm{o}_{1}\right)=0.44$ and $\mathrm{PI}\left(\mathrm{o}_{3}\right)=0$.

Definition (Decomposability ("no fun in gambling"))

$$
\text { If } \forall o_{i} \in O, P_{\ell_{1}}\left(o_{i}\right)=P_{\ell_{2}}\left(o_{i}\right) \text { then } \ell_{1} \sim \ell_{2}
$$

Preference Axioms

Definition (Substitutability)

If $o_{1} \sim o_{2}$ then for all sequences of one or more outcomes o_{3}, \ldots, o_{k} and sets of probabilities p, p_{3}, \ldots, p_{k} for which $p+\sum_{i=3}^{k} p_{i}=1$,
$\left[p: o_{1}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right] \sim\left[p: o_{2}, p_{3}: o_{3}, \ldots, p_{k}: o_{k}\right]$.

Definition (Continuity)

Suppose $o_{1} \succ o_{2}$ and $o_{2} \succ o_{3}$, then there exists a $p \in[0,1]$ such that $o_{2} \sim\left[p: o_{1}, 1-p: o_{3}\right]$.

Preferences and utility functions

Theorem (von Neumann and Morgenstern, 1944)

If an agent's preference relation satisfies the axioms
Completeness, Transitivity, Decomposability, Substitutability, Monotonicity and Continuity then there exists a function
u : O -> [0; 1] with the properties that:

1. $u\left(o_{1}\right) \geq u\left(o_{2}\right)$ iff the aqent prefers o_{1} to o_{2} : and
2. $u\left(\left[p_{1}: o_{1}, \ldots, p_{k}: o_{k}\right]\right)=\sum_{i=1}^{k} p_{i} u\left(o_{i}\right)$.

Proof idea:
define the utility of the best outcome $u(0)=1$ and of the worst $u(0)=0$. Now define the utility of each other outcome o as the p for which .

$$
o \sim[p: \bar{o} ;(1-p): \underline{o}]
$$

Teoria dellutilta attesa (Von Neumann e Morgenstern 1947)

Se le preferenze di un individuo soddisfano un insieme di assiomi allora le scelte di quell'individuo massimizzano l'utilità attesa e quindi sono razionali

Giochi strategici

Game theory

... what if Bob hates Alice and wants to avoid her too, ...while Carol is indifferent to seeing Alice and has a crush on Bob?

In this case, we might want to revisit our previous assumption that Bob and Carol will act randomly without caring about what the other two agents do.

To study such settings, we turn to game theory

Multiagent Encounters

We need a model of the environment in which these agents will act...
agents simultaneously choose an action to perform, and as a result of the actions they select, an outcome in Ω will result the actual outcome depends on the combination of actions assume each agent has just two possible actions that it can perform, C ("cooperate") and D ("defect")
Environment behavior given by state transformer function:

Multiagent Encounters

Here is a state transformer function:

$$
\tau(D, D)=\omega_{1} \quad \tau(D, C)=\omega_{2} \quad \tau(C, D)=\omega_{3} \quad \tau(C, C)=\omega_{4}
$$

(This environment is sensitive to actions of both agents.)
Here is another:

$$
\tau(D, D)=\omega_{1} \quad \tau(D, C)=\omega_{1} \quad \tau(C, D)=\omega_{1} \quad \tau(C, C)=\omega_{1}
$$

(Neither agent has any influence in this environment.) And here is another:

$$
\tau(D, D)=\omega_{1} \quad \tau(D, C)=\omega_{2} \quad \tau(C, D)=\omega_{1} \quad \tau(C, C)=\omega_{2}
$$

(This environment is controlled by j.)

Rational Action

Suppose we have the case where both agents can influence the outcome, and they have utility functions as follows:

$$
\begin{array}{llll}
u_{i}\left(\omega_{\mathbf{1}}\right)=1 & u_{i}\left(\omega_{2}\right)=1 & u_{i}\left(\omega_{3}\right)=4 & u_{i}\left(\omega_{4}\right)=4 \\
u_{j}\left(\omega_{\mathbf{1}}\right)=1 & u_{j}\left(\omega_{2}\right)=4 & u_{j}\left(\omega_{3}\right)=1 & u_{j}\left(\omega_{4}\right)=4
\end{array}
$$

With a bit of abuse of notation:

$$
\begin{array}{llll}
u_{i}(D, D)=1 & u_{i}(D, C)=1 & u_{i}(C, D)=4 & u_{i}(C, C)=4 \\
u_{j}(D, D)=1 & u_{j}(D, C)=4 & u_{j}(C, D)=1 & u_{j}(C, C)=4
\end{array}
$$

Then agent i 's preferences are:

$$
C, C \succeq_{i} C, D \quad \succ_{i} \quad D, C \succeq_{i} D, D
$$

If you were agent i in this scenario, what would you choose to do - cooperate or defect?

Payoff Matrices

We can characterize the previous scenario in a payoff matrix:

Agent i is the column player Agent j is the row player No strategic thinking

i		
defect	1	4
j	1	1
coop	1	4
	4	4

Normal-form game

A (finite, n-person) normal-form game is a tuple (N,A, u), where:

- N is a finite set of n players, indexed by i;
- $A=A 1 \times \cdots \times A n$, where $A i$ is a finite set of actions action available to player i.
- Each vector $a=(a 1, . . ., a n) \in A$ is called an action profile;
- $u=(u 1, \ldots, u n)$ where $u i: A \rightarrow R$ is a real-valued utility (or payoff) function for player i.

Common payoff game

A common-payoff game is a game in which for all action profiles $a \in A 1 \times \cdots \times A n$ and any pair of agents i, j, it is the case that ui(a) = uj(a)

pure coordination games or team games no conflicting interests

Competitive and Zero-Sum Interactions

Where preferences of agents are diametrically opposed we have strictly competitive scenarios Zero-sum encounters are those where utilities sum to zero:

$$
u_{i}(\omega)+u_{j}(\omega)=0 \quad \text { for all } \omega \in \Omega
$$

Zero sum implies strictly competitive
Zero sum encounters in real life are very rare ... but people tend to act in many scenarios as if they were zero sum

Ex Matching Pennies

Head and Tail
If pennies match then 2 pays 1,
if they differ then 1 pays 2
no equilibrium!
Game is strict competitive

Example: BoS

games can include elements of both coordination and competition
$N=\{1,2\}$
$A_{1}=\{B, S\}$
$A_{2}=\{B, S\}$
$\mathrm{u}_{1}, \mathrm{u}_{2}$ in figura

B: Bach
S: Strawinsky
Battle of the Sexes

Solution Concepts

How will a rational agent will behave in any given scenario? Play. . .

Strategies that maximise social welfare;
Pareto optimal strategies;
Nash equilibrium strategy;
Dominant strategy.

