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Utility-Based Agent!

environment 
agent 

? 

sensors 

actuators 



General Framework!
!!An agent operates in some given finite state space 

!!No goal state; instead, states provide rewards 
(positive, negative, or null) that quantify in a single unit 
system what the agent gets when it visits this state 
(e.g., a bag of gold, a sunny afternoon on the beach, a 
speeding ticket, etc...) 

!!Each action has several possible outcomes, each with 
some probability; sensing may also be imperfect 

!!The agent’s goal is to plan a strategy (here, it is called 
a policy) to maximize the expected amount of rewards 
collected 



!!Uncertainty in action only  
 [The world is fully observable] 

!!Uncertainty in both action and sensing  
 [The world is partially observable] 

Two Cases!



Non-deterministic vs. Probabilistic Uncertainty!

? 

b a c 
{a,b,c} 

"! decision that is 
    best for worst case 

? 

b a c 
{a(pa),b(pb),c(pc)} 

"! decision that maximizes 
    expected utility value 

Non-deterministic model Probabilistic model 

~ Adversarial search 



Action Model 

Action a: 
 s ! S " a(s) = {s1 (p1), s2 (p2), ... , sn (pn)} 

probabilistic distribution  
of possible successor states 

[           ] Markov assumption: The action model 
a(s) does not depend on what happened 
prior to reaching s  



Expected Utility!
Random variable X with n values x1,…,xn and 
distribution (p1,…,pn) 

E.g.: X is the state reached after doing an 
action A under uncertainty 

Function U of X 
E.g., U is the utility of a state 

The expected utility of A is 
              EU[A] = #i=1,…,n p(xi|A)U(xi) 



s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 

!! S0 describes many actual states 
of the real world. A1 reaches s1 
in some states, s2 in others, and 
s3 in the remaining ones 

!! If the agent could return to S0 
many times in independent ways 
and if at each time it executed 
A1, then it would reach s1 20% 
of the times, s2 70% of the 
times, and s3 10% of the times 

Starting very simple ...!



s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70    # rewards associated with  

               states s1, s2, and s3 

!! Assume that the agent receives 
rewards in some states (rewards 
can be positive or negative) 

!! If the agent could execute A1 in S0 
many times, the average 
(expected) reward that it would 
get is: 
U1(S0) = 100x0.2 + 50x0.7 + 
70x0.1 
  = 20 + 35 + 7 
  = 62 

Introducing rewards ...!



s0 

s3 s2 s1 

A1 

0.2 0.7 0.1/0.2         0.8 
100 50 70               80 

... and a second action ...!

A2 

s4 

!! U1(S0) = 62 

!! U2(S0) = 78 

!! If the agent chooses to 
execute A2, it will 
maximize the average 
collected rewards  



s0 

s3 s2 s1 

A1 

0.2 0.7 0.1 
100 50 70 

A2 

s4 
0.2 0.8 

80 

•! EU(A1) = 62 – 5 = 57 
•! EU(A2) = 74 – 25 = 49 
  EU(S0) = max{EU(A1),EU(A2)}  
             = 57 

-5 -25 

Introducing Action Costs!



MEU Principle!

rational agent should choose the action that 
maximizes agent’s expected utility 

this is the basis of the field of decision theory 

normative criterion for rational choice of action 

IT’S ALL SOLVED!!!  



Not quite…!

Must have complete model of: 
Actions 
Utilities 
States 

Even if you have a complete model, will be 
computationally intractable 

In fact, a truly rational agent takes into account the 
utility of reasoning as well---bounded rationality 

Nevertheless, great progress has been made in this area 
recently, and we are able to solve much more complex 
decision theoretic problems than ever before 



We’ll look at!

Decision Theoretic Planning 
Simple decision making (ch. 16) 
Sequential decision making (ch. 17) 



Decision Networks!

Extend BNs to handle actions and utilities 

Also called Influence diagrams 

Make use of BN inference 

Can do Value of Information calculations 



How do we represent Uncertainty?!
We need to answer several questions: 

What do we represent & how we represent it? 
What language do we use to represent our 

uncertainty? What are the semantics of our 
representation? 

What can we do with the representations? 
What queries can be answered? How do we answer 

them? 

How do we construct a representation? 
Can we ask an expert? Can we learn from data? 



Example: Belief State!
!!In the presence of non-deterministic sensory 
uncertainty, an agent belief state represents all the 
states of the world that it thinks are possible at a given 
time or at a given stage of reasoning  

!!In the probabilistic model of uncertainty, a probability 
is associated with each state to measure its likelihood to 
be the actual state  
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Making decisions under uncertainty!

Suppose I believe the following: 
P(A25 gets me there on time | …)  = 0.04  
P(A90 gets me there on time | …)  = 0.70  
P(A120 gets me there on time | …)  = 0.95  
P(A1440 gets me there on time | …)  = 0.9999  

Which action to choose? 

 Depends on my preferences for missing flight vs. 
time spent waiting, etc. 

Utility theory is used to represent and infer preferences 

Decision theory = probability theory + utility theory 



Decision Theory: An agent is rational exactly 
when it chooses the action with the 
maximum expected utility taken over all 
results of actions. 
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Example 
!!Consider a world where a dentist agent D meets a new 
patient P 

!!D is interested in only one thing: whether P has a 
cavity, which D models using the proposition Cavity 

!!Before making any observation, D’s belief state is: 

!!This means that D believes that a fraction p of patients 
have cavities 

21 

cavity ¬ cavity 
p 1-p 



Where do probabilities come from?!
!!Frequencies observed in the past, e.g., by the agent, 
its designer, or others 
!!Symmetries, e.g.: 

•! If I roll a dice, each of the 6 outcomes has 
probability 1/6 

!!Subjectivism, e.g.: 
•! If I drive on Highway 280 at 120mph, I will get a 

speeding ticket with probability 0.6 
•! Principle of indifference: If there is no knowledge to 

consider one possibility more probable than 
another, give them the same probability 
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Syntax!

Basic element: random variable 

Similar to propositional logic: possible worlds defined by 
assignment of values to random variables. 

Boolean random variables 

e.g., Cavity (do I have a cavity?) 

Discrete random variables 

e.g., Weather is one of <sunny,rainy,cloudy,snow> 
Domain values must be exhaustive and mutually 
exclusive 



Syntax!

Elementary proposition constructed by 
assignment of a value to a random variable: 

 e.g., Weather = sunny, Cavity = false 
 (abbreviated as ¬cavity) 

Complex propositions formed from elementary 
propositions and standard logical connectives  

e.g., Weather = sunny $ Cavity = false 



Syntax!

Atomic event: A complete specification of the 
state of the world about which the agent is 
uncertain 

E.g., if the world consists of only two Boolean 
variables Cavity and Toothache, then there are 4 
distinct atomic events: 

Cavity = false %Toothache = false 
Cavity = false % Toothache = true 
Cavity = true % Toothache = false 
Cavity = true % Toothache = true 

Atomic events are mutually exclusive and 
exhaustive 



Axioms of probability!

For any propositions A, B 

0 ! P(A) ! 1 
P(true) = 1 and P(false) = 0 
P(A $ B) = P(A) + P(B) - P(A % B) 



Prior probability!

Prior or unconditional probabilities of 
propositions 

e.g., P(Cavity = true) = 0.1 and P(Weather = 
sunny) = 0.72 correspond to belief prior to 
arrival of any (new) evidence 

Probability distribution gives values for all 
possible assignments: 

P(Weather) = <0.72,0.1,0.08,0.1> 
(normalized, i.e., sums to 1) 

    



Prior probability!
    

Joint probability distribution for a set of random 
variables gives the probability of every atomic event on 
those random variables 

P(Weather,Cavity) = a 4 " 2 matrix of values: 

 Weather =   sunny  rainy  cloudy snow  
 Cavity = true   0.144  0.02  0.016  0.02 
 Cavity = false  0.576  0.08  0.064  0.08 

Every question about a domain can be answered by the 
joint distribution 



Inference by enumeration!

Start with the joint probability distribution: 

The probability of a proposition is equal to the sum of 
the probabilities of the atomic events in which it holds; 

For any proposition #, sum the atomic events where it 
is true: P(#) = $%:%!# P(%) 



Inference by enumeration!

Start with the joint probability distribution: 

For any proposition #, sum the atomic events where it 
is true: P(#) = $%:%!# P(%) 

P(toothache) = ? 



Inference by enumeration!

Start with the joint probability distribution: 

For any proposition #, sum the atomic events where it 
is true: P(#) = $%:%!# P(%) 

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 

P(cavity V toothache) = ? 



Inference by enumeration!

Start with the joint probability distribution: 

For any proposition #, sum the atomic events where it 
is true: P(#) = $%:%!# P(%) 

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2 

P(cavity V toothache) = 



Conditional Probability!

New information can change the probability. 
Example: The probability of a cavity increases if we know the 
patient has a toothache. 
If additional information is available, we can no longer use the 
prior probabilities! 

P(A|B) is the conditional or posterior probability of A given that 
all we know is B: 
P(Cavity | Toothache) = 0.8 

P(X|Y) is the table of all conditional probabilities over all 
values of X and Y. 
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Conditional Probability!

Definition: 
P(A|B) =P(A%B) / P(B) 
Read P(A|B): probability of A given B 

can also write this as: 
P(A%B) = P(A|B) P(B) 
called the product rule 



Conditional probability!

Conditional or posterior probabilities 
e.g., P(cavity | toothache) = 0.8 
i.e., given that toothache is all I know 

Notation for conditional distributions: 
P(Cavity | Toothache) = (2-element vector of 2-element vectors) 

If we know more, e.g., cavity is also given, then we have 
P(cavity | toothache, cavity) = 1 

New evidence may be irrelevant, allowing simplification, e.g., 
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8 

This kind of inference, sanctioned by domain knowledge, is crucial 



Conditional probability!

Definition of conditional probability: 
P(a | b) = P(a % b) / P(b) if  P(b) > 0 

Product rule gives an alternative formulation: 
P(a % b) = P(a | b) P(b) = P(b | a) P(a) 

A general version holds for whole distributions, e.g., 
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity) 

(View as a set of 4 " 2 equations, not matrix mult.) 

Chain rule is derived by successive application of product rule: 
P(X1, …,Xn) = P(X2,...,Xn) P(X1 | X2,...,Xn) 
                 = P(X3,...,Xn) P(X2 | X3,...,Xn) P(X1 | X2,...,Xn) 
                 = … 
                 = &i= 1^n P(Xi | Xi+1, … ,Xn) 



Generalization!

 P(A % B % C) = P(A|B,C) P(B|C) P(C) 



Start with the joint probability distribution: 

Can also compute conditional probabilities: 

P(¬cavity | toothache)  = P(¬cavity % toothache) 
      P(toothache) 
    =      0.016+0.064 
    0.108 + 0.012 + 0.016 + 0.064 
    = 0.4 

Inference by enumeration!



Denominator can be viewed as a normalization constant ' 

P(Cavity | toothache) = ', P(Cavity,toothache)  
= ', [P(Cavity,toothache,catch) + 

P(Cavity,toothache,¬ catch)] 
= ', [<0.108,0.016> + <0.012,0.064>]  
= ', <0.12,0.08> = <0.6,0.4> 

General idea: compute distribution on query variable by fixing 
evidence variables and summing over hidden variables 

Normalization!



Inference by enumeration, contd.!

Typically, we are interested in  
 the posterior joint distribution of the query variables Y  
 given specific values e for the evidence variables E 

Let the hidden variables be H = X - Y - E 

Then the required summation of joint entries is done by summing out the 
hidden variables: 

P(Y | E = e) = 'P(Y,E = e) = '$hP(Y,E= e, H = h) 

The terms in the summation are joint entries because Y, E and H together 
exhaust the set of random variables 

Obvious problems: 
1.! Worst-case time complexity O(dn) where d is the largest arity 
2.! Space complexity O(dn) to store the joint distribution 
3.! How to find the numbers for O(dn) entries? 



Independence!

A and B are independent iff 
P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B) 

P(Toothache, Catch, Cavity, Weather) 
 = P(Toothache, Catch, Cavity) P(Weather) 

32 entries reduced to 12; for n independent biased coins, O(2n) 
"O(n) 

Absolute independence powerful but rare 

Dentistry is a large field with hundreds of variables, none of which 
are independent. What to do? 



Conditional Independence!

Unfortunately, random variables of interest are 
not independent of each other 
A more suitable notion is that of conditional 
independence 
Two variables X and Y are conditionally 
independent given Z if 

P(X = x|Y = y,Z=z) = P(X = x|Z=z) for all values x,y,z 
That is, learning the values of Y does not change prediction of X 

once we know the value of Z 

I(X,Y|Z) 



Car Example!
Three propositions: 

Gas 
Battery 
Starts 

P(Battery|Gas) = P(Battery) 
Gas and Battery are independent 

P(Battery|Gas,Starts) ( P(Battery|Starts) 
Gas and Battery are not independent given 
Starts 



Conditional independence!

P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries 

If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache: 

(1) P(catch | toothache, cavity) = P(catch | cavity) 

The same independence holds if I haven't got a cavity: 
(2) P(catch | toothache,¬cavity) = P(catch | ¬cavity) 

Catch is conditionally independent of Toothache given Cavity: 
P(Catch | Toothache, Cavity) = P(Catch | Cavity) 



Conditional independence!

Catch is conditionally independent of Toothache given Cavity: 
P(Catch | Toothache, Cavity) = P(Catch | Cavity) 

Equivalent statements: 
P(Toothache | Catch, Cavity) = P(Toothache | Cavity) 

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 
P(Catch, Toothache | Cavity) = P(Toothache | Cavity) P(Catch | Cavity) 

P(A, B | C) = P(A | C) P(B | C) 

P(A, B | C) = P(A | B, C) P(B | C) 



Conditional independence contd.!

P(X,Y |Z)= P(X|Z)P(Y| Z) 

P(X|Y,Z)= P(X|Z) and P(Y|X,Z )= P(Y|Z) 

The decomposition of large probabilistic 
domains into weakly connected subsets via 
conditional independence is one of the most 
important developments in the recent history of 
AI. 
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Conditional independence contd.!

Write out full joint distribution using chain rule: 
 P(Toothache, Catch, Cavity) 

 = P(Toothache | Catch, Cavity) P(Catch, Cavity) 

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity) 

 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity) 

 I.e., 2 + 2 + 1 = 5 independent numbers 

In most cases, the use of conditional independence 
reduces the size of the representation of the joint 
distribution from exponential in n to linear in n. 

Conditional independence is our most basic and robust 
form of knowledge about uncertain environments. 



Summary!

Example 1: I(X,Y|&) and not I(X,Y|Z)!
Example 2: I(X,Y|Z) and not I(X,Y|&) !

conclusion: independence does not imply conditional 
independence!!



Bayes' Rule!

Product rule P(a%b) = P(a | b) P(b) = P(b | a) P(a) 
The order is unimportant 

 ' Bayes' rule: P(a | b) = P(b | a) P(a) / P(b) 

or in distribution form  
  P(Y|X) = P(X|Y) P(Y) / P(X) = 'P(X|Y) P(Y) 

Useful for assessing diagnostic probability from causal 
probability: 

P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect) 

E.g., let M be meningitis, S be stiff neck: 

P(m|s) = P(s|m) P(m) / P(s) = 0.8 " 0.0001 / 0.1 = 0.0008 

Note: posterior probability of meningitis still very small! 



Normalization!

If we wish to determine the absolute probability of P(C | T) and we 
do not know P(T), we can also carry out a complete case analysis 
(e.g. for C and ¬C) and use the fact that P(C | T) + P(¬C | T) = 1 
(here boolean variables): 
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Normalization!

By substituting into the first equation: 

For random variables with multiple values: 

 P(Y | X) = !P(X | Y)P(Y) 

where ' is the normalization constant needed to 
make the entries in P(Y | X) sum to 1. 
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Example!

Your doctor tells you that you have tested 
positive for a serious but rare (1/10000) 
disease. This test (T) is correct to 99% (1% 
false positive & 1% false negative results). 
What does this mean for you? 
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Example!

Moral: If the test imprecision is much greater 
than the rate of occurrence of the disease, then 
a positive result is not as threatening as you 
might think. 
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Example: Naïve Bayes Model!

A common model in early diagnosis: 
Symptoms are conditionally independent given the 

disease (or fault) 
Thus, if  

X1,…,Xn denote whether the symptoms exhibited by 
the patient (headache, high-fever, etc.) and  

H denotes the hypothesis about the patients health 
then, P(X1,…,Xn,H) = P(H)P(X1|H)…P(Xn|H), 
This naïve Bayesian model allows compact 

representation 
It does embody strong independence assumptions 



Bayes' Rule and conditional independence!

P(Cavity | toothache ! catch)  
= 'P(toothache % catch | Cavity) P(Cavity)  
= 'P(toothache | Cavity) P(catch | Cavity) P(Cavity)  

This is an example of a naïve Bayes model: 

P(Cause,Effect1, … ,Effectn) = P(Cause) &iP(Effecti|Cause) 

Total number of parameters is linear in n 



Bayes' Rule!

Product rule P(a%b) = P(a | b) P(b) = P(b | a) P(a) 
The order is unimportant 

 ' Bayes' rule: P(a | b) = P(b | a) P(a) / P(b) 

or in distribution form  
  P(Y|X) = P(X|Y) P(Y) / P(X) = 'P(X|Y) P(Y) 

Useful for assessing diagnostic probability from causal 
probability: 

P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect) 

E.g., let M be meningitis, S be stiff neck: 

P(m|s) = P(s|m) P(m) / P(s) = 0.8 " 0.0001 / 0.1 = 0.0008 

Note: posterior probability of meningitis still very small! 



Example: Naïve Bayes Model!

A common model in early diagnosis: 
Symptoms are conditionally independent given the 

disease (or fault) 
Thus, if  

X1,…,Xn denote whether the symptoms exhibited by 
the patient (headache, high-fever, etc.) and  

H denotes the hypothesis about the patients health 
then, P(X1,…,Xn,H) = P(H)P(X1|H)…P(Xn|H), 
This naïve Bayesian model allows compact 

representation 
It does embody strong independence assumptions 



Three prisoners, A, B, and C, are locked in their cells. It 
is common knowledge that one of them will be executed 
the next day and the others pardoned. Only the 
governor knows which one will be executed. Prisoner A 
asks the guard a favor: 

"Please ask the governor who will be executed, and then 
take a message to one of my friends B or C to let him 
know that he will be pardoned in the morning."  

The guard agrees, and comes back later and tells A that 
he gave the pardon message to B. What are A's chances 
of being executed, given this information? 
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Fx = “x will be freed” 
Ex = “x will be executed” 

P(Ea | Fb) = (P(Fb | Ea) * P (Ea)) / P(Fb) = (1*1/3) / 2/3 =1/2 ! 

F’b = “The guard said that Fb” 

P(Ea | F’b) = (P(F’b | Ea) * P (Ea)) / P(F’b) = (1/2*1/3) / 1/3 =1/3 

The guard has a choice of whom to inform in the case where A will 
be executed 
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Monty hall!
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All'inizio, è ovvio che: 

Supponiamo che la porta scelta è la numero 1.  
B = evento "il presentatore apre la porta 3". P(B) = 0.50 

Nel caso in cui la macchina sia dietro la porta 1, il presentatore sarà libero di scegliere la porta 2 
o 3 casualmente.  

 Pertanto, P(B | A1) = 1 / 2 
Nel caso in cui la macchina sia dietro la porta 2, il presentatore sarà obbligato ad aprire la porta 
3.  

 Pertanto P(B | A2) = 1 
Nel caso in cui la macchina sia dietro la porta 3, il presentatore sarà obbligato ad aprire la porta 
2.  

 Pertanto P(B | A3) = 0 
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Bayesian networks"

(R&N: 14.1, 14.2) 



Purpose of Bayesian Networks!
Facilitate the description of a collection of beliefs 
by making explicit causality relations and 
conditional independence among beliefs 

Provide a more efficient way (than by using 
joint distribution tables) to update belief 
strengths when new evidence is observed 



Other Names!

 Belief networks 
 Probabilistic networks 
 Causal networks 



Bayesian networks!

A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions 

Syntax: 
a set of nodes, one per variable 

a directed, acyclic graph (link ) "directly influences") 
a conditional distribution for each node given its parents: 

P (Xi | Parents (Xi)) 

In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination of 
parent values 



Example!

Cavity 

Toothache Catch 

Weather 

Topology of network encodes conditional  
independence assertions: 

Weather is independent of other variables 
Toothache and Catch are independent given Cavity 



Example!

I’m at work, neighbor John calls to say my alarm is 
ringing, but neighbor Mary doesn’t call.  Sometime 
it’s set off by a minor earthquake.  Is there a 
burglar?  

Network topology reflects “causal” knowledge: 
- A burglar can set the alarm off 
- An earthquake can set the alarm off 
- The alarm can cause Mary to call 
- The alarm can cause John to call 

Variables: Burglar, Earthquake, Alarm, 
JohnCalls, MaryCalls 



A Simple Belief Network!

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

causes 

effects 

Directed acyclic 
graph (DAG) 

Intuitive meaning of arrow 
from x to y: “x has direct  
influence on y” 

Nodes are random variables 



Assigning Probabilities to Roots!

P(B) 

0.001 

P(E) 

0.002 Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 



Conditional Probability Tables!

B E P(A|B,E) 

T
T
F
F 

T
F
T
F 

0.95 
0.94 
0.29 
0.001 

P(B) 

0.001 

P(E) 

0.002 Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

Size of the CPT for a  
node with k parents: ? 



Compactness!

A CPT for Boolean Xi with k Boolean parents has 2k rows 
for the combinations of parent values 

Each row requires one number p for Xi = true 
(the number for  Xi = false is just 1-p) 

If each variable has no more than k parents, the 
complete network requires O(n ! 2k) numbers 

I.e., grows linearly with n, vs. O(2n) for the full joint 
distribution 

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 
25-1 = 31) 



Conditional Probability Tables!

B E P(A|B,E) 

T
T
F
F 

T
F
T
F 

0.95 
0.94 
0.29 
0.001 

P(B) 

0.001 

P(E) 

0.002 

A P(J|A) 

T
F 

0.90 
0.05 

A P(M|A) 

T
F 

0.70 
0.01 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 



What the BN Means!

B E P(A|…) 

T
T
F
F 

T
F
T
F 

0.95 
0.94 
0.29 
0.001 

P(B) 

0.001 

P(E) 

0.002 

A P(J|A) 

T
F 

0.90 
0.05 

A P(M|A) 

T
F 

0.70 
0.01 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

P(x1,x2,…,xn) = (i=1,…,nP(xi|
Parents(Xi)) 



Calculation of Joint Probability!

B E P(A|…) 

T
T
F
F 

T
F
T
F

0.95 
0.94 
0.29 
0.001 

P(B) 

0.001 

P(E) 

0.002 

A P(J|…) 

T
F 

0.90 
0.05 

A P(M|…) 

T
F 

0.70 
0.01 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

P(J%M%A%¬B%¬E)? 



Calculation of Joint Probability!

B E P(A|…) 

T
T
F
F 

T
F
T
F

0.95 
0.94 
0.29 
0.001 

P(B) 

0.001 

P(E) 

0.002 

A P(J|…) 

T
F 

0.90 
0.05 

A P(M|…) 

T
F 

0.70 
0.01 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

P(J%M%A%¬B%¬E) 
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E) 
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998 
= 0.00062 
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!! P(J%M%A%¬B%¬E) 
= P(J%M|A,¬B,¬E) ) P(A%¬B%¬E) 
= P(J|A,¬B,¬E) ) P(M|A,¬B,¬E) ) P(A%¬B%¬E) 
(J and M are independent given A) 

!! P(J|A,¬B,¬E) = P(J|A) 
(J and ¬B%¬E are independent given A) 

!! P(M|A,¬B,¬E) = P(M|A) 
!! P(A%¬B%¬E) = P(A|¬B,¬E) ) P(¬B|¬E) ) P(¬E) 

                   = P(A|¬B,¬E) ) P(¬B) ) P(¬E) 
(¬B and ¬E are independent) 

!! P(J%M%A%¬B%¬E) = P(J|A)P(M|A)P(A|
¬B,¬E)P(¬B)P(¬E) 

Calculation of Joint Probability!
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!! P(J%M%A%¬B%¬E) = P(J|A)P(M|A)P(A|
¬B,¬E)P(¬B)P(¬E) 

Calculation of Joint Probability!



What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is 
independent of Burglary and Earthquake given Alarm or 
¬Alarm 

•! The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

For example, John does 
not observe any burglaries 
directly 

P(b%j) * P(b) P(j) 
P(b%j|a) = P(b|a) P(j|a) 



What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is 
independent of Burglary and Earthquake given Alarm or 
¬Alarm 

•! The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

For instance, the reasons why  
John and Mary may not call if  
there is an alarm are unrelated  

P(b%j|a) = P(b|a) P(j|a) 
P(j%m|a) = P(j|a) P(m|a) 



What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is 
independent of Burglary and Earthquake given Alarm or 
¬Alarm 

•! The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

For instance, the reasons why  
John and Mary may not call if  
there is an alarm are unrelated  

Note that these reasons could 
be other beliefs in the network. 
The probabilities summarize these 
non-explicit beliefs 



What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is 
independent of Burglary and Earthquake given Alarm or 
¬Alarm 

•! The beliefs JohnCalls 
and MaryCalls are 
independent given 
Alarm or ¬Alarm 

Burglary Earthquake 

Alarm 

MaryCalls JohnCalls 

Burglary and  
Earthquake are  
independent 

A node is independent 
of its non-descendants 
given its parents 



Types Of Nodes On A Path!

Radio 

Battery 

SparkPlugs 

Starts 

Gas 

Moves 

linear 

converging 

diverging 



Independence Relations in BN!

Given a set E of evidence nodes, two beliefs  
connected by an undirected path are  
independent if one of the following three  
conditions holds: 
1. A node on the path is linear and in E 
2. A node on the path is diverging and in E 
3. A node on the path is converging and  
    neither this node, nor any descendant is in E  

Radio 

Battery 

SparkPlugs 

Starts 

Gas 

Moves 

linear 

converging 

diverging 



Independence Relations In BN!

Given a set E of evidence nodes, two beliefs  
connected by an undirected path are  
independent if one of the following three  
conditions holds: 
1. A node on the path is linear and in E 
2. A node on the path is diverging and in E 
3. A node on the path is converging and  
    neither this node, nor any descendant is in E  
Gas and Radio are independent  
given evidence on SparkPlugs 

Radio 

Battery 

SparkPlugs 

Starts 

Gas 

Moves 

linear 

converging 

diverging 



Independence Relations In BN!

Given a set E of evidence nodes, two beliefs  
connected by an undirected path are  
independent if one of the following three  
conditions holds: 
1. A node on the path is linear and in E 
2. A node on the path is diverging and in E 
3. A node on the path is converging and  
    neither this node, nor any descendant is in E  

Gas and Radio are independent  
given evidence on Battery 

Radio 

Battery 

SparkPlugs 

Starts 

Gas 

Moves 

linear 

converging 

diverging 



Independence Relations In BN!

Given a set E of evidence nodes, two beliefs  
connected by an undirected path are  
independent if one of the following three  
conditions holds: 
1. A node on the path is linear and in E 
2. A node on the path is diverging and in E 
3. A node on the path is converging and  
    neither this node, nor any descendant is in E  

Gas and Radio are independent  
given no evidence, but they are 
dependent given evidence on  
Starts or Moves 

Radio 

Battery 

SparkPlugs 

Starts 

Gas 

Moves 

linear 

converging 

diverging 



Decision Networks cont.!

Chance nodes: random variables, as 
in BNs 
Decision nodes: actions that decision 
maker can take 
Utility/value nodes: the utility of the 
outcome state.   



R&N example!



Umbrella Network!

rain Take Umbrella 

happiness 

take/don’t take P(rain) = 0.4 

U(~umb, ~rain) = 100 
U(~umb, rain) = -100  
U(umb,~rain) = 0 
U(umb,rain) = -25 

 umbrella 

P(umb|take) = 1.0 
P(~umb|~take)=1.0 



Evaluating Decision Networks!

Set the evidence variables for current state 

For each possible value of the decision node: 
Set decision node to that value 
Calculate the posterior probability of the parent 

nodes of the utility node, using BN inference 
Calculate the resulting utility for action 

return the action with the highest utility 



Umbrella Network!

P(rain) = 0.4 

umb rain P(umb,rain | take) 

0 0 0 

0 1 0 

1 0 0.6 

1 1 0.4 

#1 

#2: 
EU(take)=-10 

rain Take Umbrella 

happiness 

take/don’t take P(rain) = 0.4 

U(~umb, ~rain) = 100 
U(~umb, rain) = -100  
U(umb, ~rain) = 0 
U(umb, rain) = -25 

 umbrella 

P(umb|take) = 1.0 
P(~umb|~take)=1.0 



Umbrella Network!

P(rain) = 0.4 

umb rain P(umb,rain | ~take) 

0 0 0,6 

0 1 0,4 

1 0 0 

1 1 0 

#1 

#2: 
EU(~take)=20 

rain Take Umbrella 

happiness 

take/don’t take P(rain) = 0.4 

U(~umb, ~rain) = 100 
U(~umb, rain) = -100  
U(umb,~rain) = 0 
U(umb,rain) = -25 

 umbrella 

P(umb|take) = 1.0 
P(~umb|~take)=1.0 



Value of Information (VPI)!

Suppose agent’s current knowledge is E.  The value of 
the current best action + is 

the value of the new best action (after new evidence E’ 
is obtained): 

the value of information for E’ is: 



94 



Properties!

,j,E  VPIE(Ej)" 0 

VPI is not addittive 
VPIE(EJ, Ek) # VPIE(Ej)+ VPIE(Ek) 

VPI is order-independent 
VPIE(EJ,Ek)=VPIE(Ej)+VPIE,Ej(Ek) 
               =VPIE(Ek)+ VPIE,Ek(Ej) 
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Costs!

function INFORMATION-GATHERING-AGENT (percept) 
       return an action 

static: D, a decision network 

integrate percept into D 
j <- the value that maximizes VPI (Ej) - Cost (Ej) 
if VPI(Ej) > Cost(Ej) 

 then return REQUEST(Ej) 
else return the best action from D 

96 



Umbrella Network!

rain 

forecast 

Take Umbrella 

happiness 

take/don’t take P(rain) = 0.4 

U(~umb, ~rain) = 100 
U(~umb, rain) = -100  
U(umb,~rain) = 0 
U(umb,rain) = -25 

 umbrella 
P(umb|take) = 1.0 
P(~umb|~take)=1.0 

R F P(F|R) 

0 0 0.8 

0 1 0.2 

1 0 0.3 

1 1 0.7 



VOI!

VOI(forecast)= 

  P(rainy)EU(+rainy) + 
  P(~rainy)EU(+~rainy) – 
  EU(+) 

the value of information for E’ is: 



Umbrella Network!

take/don’t take 

F R P(R|F) 

0 0 0.8 

0 1 0.2 

1 0 0.3 

1 1 0.7 

P(R|F=rainy) = 0.4 

rain 

forecast 

Take Umbrella 

happiness 

take/don’t take P(rain) = 0.4 

U(~umb, ~rain) = 100 
U(~umb, rain) = -100  
U(umb,~rain) = 0 
U(umb,rain) = -25 

 umbrella 
P(umb|take) = 1.0 
P(~umb|~take)=1.0 

R F P(F|R) 

0 0 0.8 

0 1 0.2 

1 0 0.3 

1 1 0.7 



umb rain P(umb,rain | take, rainy) 

0 0 0 

0 1 0 

1 0 0.3 

1 1 0.7 

#1: EU(take|
rainy) = -17,5 

umb rain P(umb,rain | take, ~rainy) 

0 0 0 

0 1 0 

1 0 0.8 

1 1 0.2 

#3: EU(take|
~rainy) = -5 

umb rain P(umb,rain | ~take, rainy) 

0 0 0.3 

0 1 0.7 

1 0 0 

1 1 0 

#2: EU(~take|
rainy) = -40 

umb rain P(umb,rain |~take, ~rainy) 

0 0 0.8 

0 1 0.2 

1 0 0 

1 1 0 

#4: EU(~take|
~rainy) = 60 

(-7+36= 29) 



Decision-Making with Probabilistic 
Uncertainty "

(R&N: 17.1, 17.2, 17.3) 



A complete (but still very simple) example: Finding Juliet!

!!A robot, Romeo, is in Charles’ office and must deliver a letter to 
Juliet 
!!Juliet is either in her office, or in the conference room. Each 
possibility has probability 0.5 
!!Traveling takes 5 minutes between Charles’ and Juliet’s office, 10 
minutes between Charles’ or Juliet’s office and the conference room 

!!To perform his duties well and save battery, the robot wants to 
deliver the letter while minimizing the time spent in transit 

Juliet’s off. 

Conf. room 

10min 
5min 

10min 

Charles’ off. 



States and Actions in Finding-Juliet Problem!

!!States: 
•! S0: Romeo in Charles’ office 
•! S1: Romeo in Juliet’s office and Juliet here 
•! S2: Romeo in Juliet’s office and Juliet not here 
•! S3: Romeo in conference room and Juliet here 
•! S4: Romeo in conference room and Juliet not here 
•! In this example, S1 and S3 are terminal states 

!!Actions: 
•! GJO (go to Juliet’s office) 
•! GCR (go to conference room) 
•! The uncertainty in an action is directly linked to the 

uncertainty in Juliet’s location 



State/Action Tree!

s0 

s3 s4 s2 s1 

s3 s1 

GJO 

GJO 

GCR 

GCR 

!! In this example, only the 
terminal states give 
positive rewards (say, 
100) 

!! The cost of each action  
(~ negative reward of 
reached state) is its 
duration 

100 

100 

100 

100 

10 

10 5 

10 

Juliet’s off. 

Conf. room 

10min 
5min 

10min 

Charles’ off. 



State/Action Tree!

s0 

s3 s4 s2 s1 

s3 s1 

GJO 

GJO 

GCR 

GCR 

!! In this example, only the 
terminal  states give 
positive rewards (say, 100) 

!! The cost of each action  
(~ negative reward of 
reached state) is its 
duration 

80 

95 

85 

90 

10 

10 5 

10 

-10 -5 

0 



State/Action Tree!

s0 

s3 s4 s2 s1 

s3 s1 

GJO 

GJO 

GCR 

GCR 

80 

95 

85 

90 

10 

10 5 

10 

-10 -5 

U(s4) = 80 
U(s2) = 85 

U(s0) = max{85, 90} 

!! The computation of U 
(utility) at each non-
terminal node resembles 
backing up the values of 
an evaluation function in 
adversarial search 



State/Action Tree!

s0 

s3 s4 s2 s1 

s3 s1 

GJO 

GJO 

GCR 

GCR 

80 

95 

85 

90 

10 

10 5 

10 

-10 -5 

U(s4) = 80 U(s2) = 85 

U(s0) = max{85, 90} 

!! The computation of U 
(utility) at each non-
terminal node resembles 
backing up the values of 
an evaluation function in 
adversarial search 

!! The best choice in s0 is to 
select GJO  



Generalization!
!!Inputs: 

•! Initial state s0 

•! Action (transition) model 
•! Reward R(s) collected in each state s 

!!A state is terminal if it has no successor 
!!Starting at s0, the agent keeps executing 
actions until it reaches a terminal state 
!!Its goal is to maximize the expected sum of 
rewards collected (additive rewards)  
!!Assume for a while that the same state can’t 
be reached twice (no cycles) 
[finite state space " finite state/action tree] 



Utility of a State 

The utility of a state s measures its desirability: 

!!If s is terminal: 
U(s) = R(s) 

!!If s is non-terminal,  
U(s) = R(s) + maxa!Appl(s)#s’!Succ(s,a)P(s’|a.s)U(s’) 
[the reward of s augmented by the expected 
sum of rewards collected in future states] 



 U(s) = R(s) + maxa!Appl(s) #s’!Succ(s,a)P(s’|a.s)U(s’) 

Appl(s) is the set of 
all actions applicable 

to state s 

Succ(s,a) is the set of all 
possible states after 

applying a to s 
P(s’|a.s) is the probability 

of being in s’ after 
executing a in s 

[the reward of s augmented by the expected  
sum of rewards collected in future states] 



 U(s) = R(s) + maxa!Appl(s)#s’!Succ(s,a) P(s’|a.s)U(s’) 



Utility with Action Costs!
U(s) =  
 R(s) + maxa!Appl(s)[-cost(a) + #s’!Succ(s,a) P(s’|a.s)U(s’)] 

Bellman equation 



Optimal Policy!

U(s) = R(s) + maxa!Appl(s)[-cost(a) + #s’!Succ(s,a) P(s’|a.s)U(s’)] 

!! A policy is a function that maps each state s 
into the action to execute if s is reached 

!! The optimal policy P* is the policy that 
always lead to maximizing the expected sum 
of rewards collected in future states  
(Maximum Expected Utility principle) 

P*(s) = arg maxa!Appl(s)[-cost(a)+#s’!Succ(s,a) P(s’|a.s)U(s’)] 



Issues!

1)! What if the set of states reachable from the 
initial state is too large to be entirely 
generated (e.g., there is a time limit)? 

2)! How to deal with cycles (states that can be 
reached multiple times)? 



1)! What if the set of states reachable from the 
initial state is too large to be entirely 
generated (e.g., there is a time limit)? 

!! Expand the state/action tree to some depth 
h 

!! Estimate the utilities of leaf nodes  
[Reminiscent of evaluation function in game 
trees] 

!! Back-up utilities as described before (using 
estimated utilities at leaf nodes) 



Simple Robot Navigation Problem!

•! In each state, the possible actions are U, D, R, and L 



Probabilistic Transition Model!

•! In each state, the possible actions are U, D, R, and L 
•! The effect of U is as follows (transition model): 

•! With probability 0.8 the robot does the right thing (U, D, R, L) 



Probabilistic Transition Model!

•! In each state, the possible actions are U, D, R, and L 
•! The effect of U is as follows (transition model): 

•!With probability 0.8 the robot does the right thing (U, D, R, L) 
•!With probability 0.1 it moves in a direction perpendicular to the  
  intended one 



Probabilistic Transition Model!

•! In each state, the possible actions are U, D, R, and L 
•! The effect of U is as follows (transition model): 

•!With probability 0.8 the robot does the right thing (U, D, R, L) 
•!With probability 0.1 it moves in a direction perpendicular to the  
  intended one 
•!If the robot can’t move, it stays in the same square 



Markov Property!

The transition properties depend only  
on the current state, not on previous  
history (how that state was reached)  



•! Planned sequence of actions:  (U, R) 

2 

3 

1 

4 3 2 1 

[3,2] 



•! Planned sequence of actions:  (U, R) 
•! U is executed 

2 

3 

1 

4 3 2 1 

[3,2] 

[4,2] [3,3] [3,2] 



•! Planned sequence of actions:  (U, R) 
•! U has been executed 
•! R is executed 

•! There are 9 possible sequences of states  
   – called histories –  and 6 possible final states  
   for the robot! 

4 3 2 1 

2 

3 

1 

[3,2] 

[4,2] [3,3] [3,2] 

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1] 



Probability of Reaching the Goal!

•!P([4,3] | (U,R).[3,2]) =  
                      P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])  
                      + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2]) 

2 

3 

1 

4 3 2 1 

Note importance of Markov property  
in this derivation 

•!P([3,3] | U.[3,2]) = 0.8 
•!P([4,2] | U.[3,2]) = 0.1 

•!P([4,3] | R.[3,3]) = 0.8 
•!P([4,3] | R.[4,2]) = 0.1 

•!P([4,3] | (U,R).[3,2]) = 0.65 



Utility Function!

•! [4,3] provides power supply 
•! [4,2] is a sand area from which the robot cannot escape 

-1 

+1 

2 

3 

1 

4 3 2 1 



Utility Function!

•! [4,3] provides power supply 
•! [4,2] is a sand area from which the robot cannot escape 
•! The robot needs to recharge its batteries 

-1 

+1 

2 

3 

1 

4 3 2 1 



Utility Function!

•! [4,3] provides power supply 
•! [4,2] is a sand area from which the robot cannot escape 
•! The robot needs to recharge its batteries 
•! [4,3] or [4,2] are terminal states 

-1 

+1 

2 

3 

1 

4 3 2 1 



Utility of a History!

•! [4,3] provides power supply 
•! [4,2] is a sand area from which the robot cannot escape 
•! The robot needs to recharge its batteries 
•! [4,3] or [4,2] are terminal states 
•! The utility of a history is defined by the utility of the last  
   state (+1 or –1) minus n/25, where n is the number of moves 

-1 

+1 

2 

3 

1 

4 3 2 1 



Utility of an Action Sequence!

•! Consider the action sequence (U,R) from [3,2] 

-1 

+1 

2 

3 

1 

4 3 2 1 



Utility of an Action Sequence!

•! Consider the action sequence (U,R) from [3,2] 
•! A run produces one among 7 possible histories, each with some 
   probability 

[3,2] 

[4,2] [3,3] [3,2] 

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1] 

-1 

+1 

2 

3 

1 

4 3 2 1 



Utility of an Action Sequence!

-1 

+1 

•! Consider the action sequence (U,R) from [3,2] 
•! A run produces one among 7 possible histories, each with some 
   probability 
•! The utility of the sequence is the expected utility of the histories: 

                                    U = #hUh P(h) 

2 

3 

1 

4 3 2 1 

[3,2] 

[4,2] [3,3] [3,2] 

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1] 



Optimal Action Sequence!

-1 

+1 

•! Consider the action sequence (U,R) from [3,2] 
•! A run produces one among 7 possible histories, each with some 
   probability 
•! The utility of the sequence is the expected utility of the histories 
•! The optimal sequence is the one with maximal utility 

2 

3 

1 

4 3 2 1 

[3,2] 

[4,2] [3,3] [3,2] 

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1] 



Optimal Action Sequence!

-1 

+1 

•! Consider the action sequence (U,R) from [3,2] 
•! A run produces one among 7 possible histories, each with some 
   probability 
•! The utility of the sequence is the expected utility of the histories 
•! The optimal sequence is the one with maximal utility 
•! But is the optimal action sequence what we want to  
  compute? 

2 

3 

1 

4 3 2 1 

only if the sequence is executed blindly!  

[3,2] 

[4,2] [3,3] [3,2] 

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1] 



Therefore, a solution must specify what the 
agent should do for any state that the agent 
might reach.  

A solution of this kind is called a policy. 
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Terminal States, Rewards, and Costs 

!! Two terminal states: (4,2) and (4,3) 
!! Rewards: 

•! R(4,3) = +1 [The robot finds gold] 
•! R(4,2) = -1 [The robot gets trapped in quick sands] 
•! R(s) = -0.04 in all other states 

!! Actions have zero cost  
[actually, they are encoded in the negative rewards of non-
terminal states] 

3 

2 

1 

4 3 2 1 

+1 

-1 

-.04 

-.04 -.04 -.04 

-.04 

-.04 

-.04 

-.04 

-.04 



Utility of a State 

The utility of a state s measures its desirability: 

!!If s is terminal: 
U(s) = R(s) 

!!If s is non-terminal,  
U(s) = R(s) + maxa!Appl(s)#s’!Succ(s,a)P(s’|a.s)U(s’) 
[the reward of s augmented by the expected 
sum of rewards collected in future states] 



State Utilities 

!! The utility of a state s is the maximal expected amount of 
reward that the robot will collect from s and future states by 
executing some action in each encountered state, until it 
reaches a terminal state (infinite horizon) 

!! Under the Markov and infinite horizon assumptions, the utility 
of s is independent of when and how s is reached  
[It only depends on the possible sequences of states after s, 
not on the possible sequences before s] 

3 

2 

1 

4 3 2 1 

+1 

-1 0.66 

0.39 0.61 0.66 0.71 

0.76 

0.87 0.81 0.92 



Policy (Reactive/Closed-Loop Strategy)!

•! A policy ( is a complete mapping from states to actions 

-1 

+1 

2 

3 

1 

4 3 2 1 



Optimal Policies for Various R(s)!

+1 

-1 

+1 

-1 

R(s) = -0.01 

+1 

-1 

+1 

-1 

R(s) = -0.04 R(s) = -2 

R(s) > 0 



Repeat: 
$! s ! sensed state 
$! If s is terminal then exit 
$! a ! ((s) 
$! Perform a 

Reactive Agent Algorithm!



-1 

+1 

•! A policy ( is a complete mapping from states to actions 
•! The optimal policy (* is the one that always yields a  
   history (ending at a terminal state) with maximal  
   expected utility 

2 

3 

1 

4 3 2 1 

Makes sense because of Markov property  

Note that [3,2] is a “dangerous”  
state that the optimal policy  

tries to avoid 



-1 

+1 

•! A policy ( is a complete mapping from states to actions 
•! The optimal policy (* is the one that always yields a  
   history with maximal expected utility 

2 

3 

1 

4 3 2 1 

This problem is called a 
Markov Decision Problem (MDP) 

How to compute (*? 



Additive Utility!

 History H = (s0,s1,…,sn) 
 The utility of H is additive iff:  
    U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = # R(i)  

Reward 



Additive Utility!

 History H = (s0,s1,…,sn) 
 The utility of H is additive iff:  
    U(s0,s1,…,sn) = R(0) + U(s1,…,sn)  = # R(i)  
 Robot navigation example: 

R(n) = +1 if sn = [4,3] 
R(n) = -1 if sn = [4,2]  
R(i) = -1/25 if i = 0, …, n-1  
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Defining Equations 

!! If s is terminal: 
  U(s) = R(s)  

!! If s is non-terminal: 
  U(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’)  
[Bellman equation]  

!! P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’) 
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Defining Equations 

!! If s is terminal: 
  U(s) = R(s)  

!! If s is non-terminal: 
  U(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’) 
 [Bellman equation] 

!! P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’) 

The utility of s depends on  
the utility of other states s’ 
(possibly, including s), and  
vice versa 

The equations  
are non-linear 



Value Iteration Algorithm 

1.! Initialize the utility of each non-terminal states to U0(s) = 0  

2.! For t = 0, 1, 2, ... Do 

Ut+1(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)Ut(s’) 
for each non-terminal state s 

3 

2 

1 

4 3 2 1 

+1 

-1 0 

0 0 0 0 

0 

0 0 0 3 

2 

1 

4 3 2 1 

+1 

-1 0.66 
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Value Iteration Algorithm!

1.! Initialize the utility of each non-terminal states to U0(s) = 0  

2.! For t = 0, 1, 2, ... do 

  Ut+1(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|
a.s)Ut(s’) 
for each non-terminal state s 

3.! For each non-terminal state s do  

  P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’) 
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Value Iteration Algorithm 

1.! Initialize the utility of each non-terminal states to U0(s) = 0  

2.! For t = 1, 2, ... do 

  Ut+1(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|
a.s)Ut(s’) 
for each non-terminal state s 

3.! For each non-terminal state s do  

  P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’) 

(s) = 0  

3. For each non-terminal state s do  

Value iteration is essentially the same as 
computing the best move from each state using a 
state/action tree expanded to a large depth h (with 
estimated utilities of the non-terminal leaf nodes 
set to 0) 

By doing the computation for all states 
simultaneously, it avoids much redundant 
computation 



Convergence of Value Iteration!
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Convergence of Value Iteration 
!!If: 

•! The number of states is finite 
•! There exists at least one terminal state that gives a 

positive reward and is reachable with non-zero 
probability from every other non-terminal state 
(connectivity of the state space) 

•! R(s) - 0 at every non-terminal state 
•! The cost of every action is . 0 

!!Then value iteration converges toward an optimal 
policy if we wait long enough 

!!But what if the above conditions are not verified?  
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