
Lezione n. !

Corso di Laurea:!

Insegnamento:!

Email:!

A.A. 2014-2015!

Silvia Rossi!

Decisioni in caso di incertezza

Lezione n. 5

Informatica!
Insegnamento:
Sistemi !
multi-agente!

Email:
silrossi@unina.it!

Decision-Making with Probabilistic
Uncertainty "

(R&N: 16.1, 16.5, 16.6)

Utility-Based Agent!

environment
agent

?

sensors

actuators

General Framework!
!!An agent operates in some given finite state space

!!No goal state; instead, states provide rewards
(positive, negative, or null) that quantify in a single unit
system what the agent gets when it visits this state
(e.g., a bag of gold, a sunny afternoon on the beach, a
speeding ticket, etc...)

!!Each action has several possible outcomes, each with
some probability; sensing may also be imperfect

!!The agent’s goal is to plan a strategy (here, it is called
a policy) to maximize the expected amount of rewards
collected

!!Uncertainty in action only
 [The world is fully observable]

!!Uncertainty in both action and sensing
 [The world is partially observable]

Two Cases!

Non-deterministic vs. Probabilistic Uncertainty!

?

b a c
{a,b,c}

"! decision that is
 best for worst case

?

b a c
{a(pa),b(pb),c(pc)}

"! decision that maximizes
 expected utility value

Non-deterministic model Probabilistic model

~ Adversarial search

Action Model

Action a:
 s ! S " a(s) = {s1 (p1), s2 (p2), ... , sn (pn)}

probabilistic distribution
of possible successor states

[] Markov assumption: The action model
a(s) does not depend on what happened
prior to reaching s

Expected Utility!
Random variable X with n values x1,…,xn and
distribution (p1,…,pn)

E.g.: X is the state reached after doing an
action A under uncertainty

Function U of X
E.g., U is the utility of a state

The expected utility of A is
 EU[A] = #i=1,…,n p(xi|A)U(xi)

s0

s3 s2 s1

A1

0.2 0.7 0.1

!! S0 describes many actual states
of the real world. A1 reaches s1
in some states, s2 in others, and
s3 in the remaining ones

!! If the agent could return to S0
many times in independent ways
and if at each time it executed
A1, then it would reach s1 20%
of the times, s2 70% of the
times, and s3 10% of the times

Starting very simple ...!

s0

s3 s2 s1

A1

0.2 0.7 0.1
100 50 70 # rewards associated with

 states s1, s2, and s3

!! Assume that the agent receives
rewards in some states (rewards
can be positive or negative)

!! If the agent could execute A1 in S0
many times, the average
(expected) reward that it would
get is:
U1(S0) = 100x0.2 + 50x0.7 +
70x0.1
 = 20 + 35 + 7
 = 62

Introducing rewards ...!

s0

s3 s2 s1

A1

0.2 0.7 0.1/0.2 0.8
100 50 70 80

... and a second action ...!

A2

s4

!! U1(S0) = 62

!! U2(S0) = 78

!! If the agent chooses to
execute A2, it will
maximize the average
collected rewards

s0

s3 s2 s1

A1

0.2 0.7 0.1
100 50 70

A2

s4
0.2 0.8

80

•! EU(A1) = 62 – 5 = 57
•! EU(A2) = 74 – 25 = 49
 EU(S0) = max{EU(A1),EU(A2)}
 = 57

-5 -25

Introducing Action Costs!

MEU Principle!

rational agent should choose the action that
maximizes agent’s expected utility

this is the basis of the field of decision theory

normative criterion for rational choice of action

IT’S ALL SOLVED!!!

Not quite…!

Must have complete model of:
Actions
Utilities
States

Even if you have a complete model, will be
computationally intractable

In fact, a truly rational agent takes into account the
utility of reasoning as well---bounded rationality

Nevertheless, great progress has been made in this area
recently, and we are able to solve much more complex
decision theoretic problems than ever before

We’ll look at!

Decision Theoretic Planning
Simple decision making (ch. 16)
Sequential decision making (ch. 17)

Decision Networks!

Extend BNs to handle actions and utilities

Also called Influence diagrams

Make use of BN inference

Can do Value of Information calculations

How do we represent Uncertainty?!
We need to answer several questions:

What do we represent & how we represent it?
What language do we use to represent our

uncertainty? What are the semantics of our
representation?

What can we do with the representations?
What queries can be answered? How do we answer

them?

How do we construct a representation?
Can we ask an expert? Can we learn from data?

Example: Belief State!
!!In the presence of non-deterministic sensory
uncertainty, an agent belief state represents all the
states of the world that it thinks are possible at a given
time or at a given stage of reasoning

!!In the probabilistic model of uncertainty, a probability
is associated with each state to measure its likelihood to
be the actual state

18 0.2 0.3 0.4 0.1

Making decisions under uncertainty!

Suppose I believe the following:
P(A25 gets me there on time | …) = 0.04
P(A90 gets me there on time | …) = 0.70
P(A120 gets me there on time | …) = 0.95
P(A1440 gets me there on time | …) = 0.9999

Which action to choose?

 Depends on my preferences for missing flight vs.
time spent waiting, etc.

Utility theory is used to represent and infer preferences

Decision theory = probability theory + utility theory

Decision Theory: An agent is rational exactly
when it chooses the action with the
maximum expected utility taken over all
results of actions.

20

Example
!!Consider a world where a dentist agent D meets a new
patient P

!!D is interested in only one thing: whether P has a
cavity, which D models using the proposition Cavity

!!Before making any observation, D’s belief state is:

!!This means that D believes that a fraction p of patients
have cavities

21

cavity ¬ cavity
p 1-p

Where do probabilities come from?!
!!Frequencies observed in the past, e.g., by the agent,
its designer, or others
!!Symmetries, e.g.:

•! If I roll a dice, each of the 6 outcomes has
probability 1/6

!!Subjectivism, e.g.:
•! If I drive on Highway 280 at 120mph, I will get a

speeding ticket with probability 0.6
•! Principle of indifference: If there is no knowledge to

consider one possibility more probable than
another, give them the same probability

22

Syntax!

Basic element: random variable

Similar to propositional logic: possible worlds defined by
assignment of values to random variables.

Boolean random variables

e.g., Cavity (do I have a cavity?)

Discrete random variables

e.g., Weather is one of <sunny,rainy,cloudy,snow>
Domain values must be exhaustive and mutually
exclusive

Syntax!

Elementary proposition constructed by
assignment of a value to a random variable:

 e.g., Weather = sunny, Cavity = false
 (abbreviated as ¬cavity)

Complex propositions formed from elementary
propositions and standard logical connectives

e.g., Weather = sunny $ Cavity = false

Syntax!

Atomic event: A complete specification of the
state of the world about which the agent is
uncertain

E.g., if the world consists of only two Boolean
variables Cavity and Toothache, then there are 4
distinct atomic events:

Cavity = false %Toothache = false
Cavity = false % Toothache = true
Cavity = true % Toothache = false
Cavity = true % Toothache = true

Atomic events are mutually exclusive and
exhaustive

Axioms of probability!

For any propositions A, B

0 ! P(A) ! 1
P(true) = 1 and P(false) = 0
P(A $ B) = P(A) + P(B) - P(A % B)

Prior probability!

Prior or unconditional probabilities of
propositions

e.g., P(Cavity = true) = 0.1 and P(Weather =
sunny) = 0.72 correspond to belief prior to
arrival of any (new) evidence

Probability distribution gives values for all
possible assignments:

P(Weather) = <0.72,0.1,0.08,0.1>
(normalized, i.e., sums to 1)

Prior probability!

Joint probability distribution for a set of random
variables gives the probability of every atomic event on
those random variables

P(Weather,Cavity) = a 4 " 2 matrix of values:

 Weather = sunny rainy cloudy snow
 Cavity = true 0.144 0.02 0.016 0.02
 Cavity = false 0.576 0.08 0.064 0.08

Every question about a domain can be answered by the
joint distribution

Inference by enumeration!

Start with the joint probability distribution:

The probability of a proposition is equal to the sum of
the probabilities of the atomic events in which it holds;

For any proposition #, sum the atomic events where it
is true: P(#) = $%:%!# P(%)

Inference by enumeration!

Start with the joint probability distribution:

For any proposition #, sum the atomic events where it
is true: P(#) = $%:%!# P(%)

P(toothache) = ?

Inference by enumeration!

Start with the joint probability distribution:

For any proposition #, sum the atomic events where it
is true: P(#) = $%:%!# P(%)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

P(cavity V toothache) = ?

Inference by enumeration!

Start with the joint probability distribution:

For any proposition #, sum the atomic events where it
is true: P(#) = $%:%!# P(%)

P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

P(cavity V toothache) =

Conditional Probability!

New information can change the probability.
Example: The probability of a cavity increases if we know the
patient has a toothache.
If additional information is available, we can no longer use the
prior probabilities!

P(A|B) is the conditional or posterior probability of A given that
all we know is B:
P(Cavity | Toothache) = 0.8

P(X|Y) is the table of all conditional probabilities over all
values of X and Y.

33

Conditional Probability!

Definition:
P(A|B) =P(A%B) / P(B)
Read P(A|B): probability of A given B

can also write this as:
P(A%B) = P(A|B) P(B)
called the product rule

Conditional probability!

Conditional or posterior probabilities
e.g., P(cavity | toothache) = 0.8
i.e., given that toothache is all I know

Notation for conditional distributions:
P(Cavity | Toothache) = (2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have
P(cavity | toothache, cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,
P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8

This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability!

Definition of conditional probability:
P(a | b) = P(a % b) / P(b) if P(b) > 0

Product rule gives an alternative formulation:
P(a % b) = P(a | b) P(b) = P(b | a) P(a)

A general version holds for whole distributions, e.g.,
P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

(View as a set of 4 " 2 equations, not matrix mult.)

Chain rule is derived by successive application of product rule:
P(X1, …,Xn) = P(X2,...,Xn) P(X1 | X2,...,Xn)
 = P(X3,...,Xn) P(X2 | X3,...,Xn) P(X1 | X2,...,Xn)
 = …
 = &i= 1^n P(Xi | Xi+1, … ,Xn)

Generalization!

 P(A % B % C) = P(A|B,C) P(B|C) P(C)

Start with the joint probability distribution:

Can also compute conditional probabilities:

P(¬cavity | toothache) = P(¬cavity % toothache)
 P(toothache)
 = 0.016+0.064
 0.108 + 0.012 + 0.016 + 0.064
 = 0.4

Inference by enumeration!

Denominator can be viewed as a normalization constant '

P(Cavity | toothache) = ', P(Cavity,toothache)
= ', [P(Cavity,toothache,catch) +

P(Cavity,toothache,¬ catch)]
= ', [<0.108,0.016> + <0.012,0.064>]
= ', <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing
evidence variables and summing over hidden variables

Normalization!

Inference by enumeration, contd.!

Typically, we are interested in
 the posterior joint distribution of the query variables Y
 given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the
hidden variables:

P(Y | E = e) = 'P(Y,E = e) = '$hP(Y,E= e, H = h)

The terms in the summation are joint entries because Y, E and H together
exhaust the set of random variables

Obvious problems:
1.! Worst-case time complexity O(dn) where d is the largest arity
2.! Space complexity O(dn) to store the joint distribution
3.! How to find the numbers for O(dn) entries?

Independence!

A and B are independent iff
P(A|B) = P(A) or P(B|A) = P(B) or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)
 = P(Toothache, Catch, Cavity) P(Weather)

32 entries reduced to 12; for n independent biased coins, O(2n)
"O(n)

Absolute independence powerful but rare

Dentistry is a large field with hundreds of variables, none of which
are independent. What to do?

Conditional Independence!

Unfortunately, random variables of interest are
not independent of each other
A more suitable notion is that of conditional
independence
Two variables X and Y are conditionally
independent given Z if

P(X = x|Y = y,Z=z) = P(X = x|Z=z) for all values x,y,z
That is, learning the values of Y does not change prediction of X

once we know the value of Z

I(X,Y|Z)

Car Example!
Three propositions:

Gas
Battery
Starts

P(Battery|Gas) = P(Battery)
Gas and Battery are independent

P(Battery|Gas,Starts) (P(Battery|Starts)
Gas and Battery are not independent given
Starts

Conditional independence!

P(Toothache, Cavity, Catch) has 23 – 1 = 7 independent entries

If I have a cavity, the probability that the probe catches in it
doesn't depend on whether I have a toothache:

(1) P(catch | toothache, cavity) = P(catch | cavity)

The same independence holds if I haven't got a cavity:
(2) P(catch | toothache,¬cavity) = P(catch | ¬cavity)

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Conditional independence!

Catch is conditionally independent of Toothache given Cavity:
P(Catch | Toothache, Cavity) = P(Catch | Cavity)

Equivalent statements:
P(Toothache | Catch, Cavity) = P(Toothache | Cavity)

P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
P(Catch, Toothache | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)

P(A, B | C) = P(A | C) P(B | C)

P(A, B | C) = P(A | B, C) P(B | C)

Conditional independence contd.!

P(X,Y |Z)= P(X|Z)P(Y| Z)

P(X|Y,Z)= P(X|Z) and P(Y|X,Z)= P(Y|Z)

The decomposition of large probabilistic
domains into weakly connected subsets via
conditional independence is one of the most
important developments in the recent history of
AI.

46

Conditional independence contd.!

Write out full joint distribution using chain rule:
 P(Toothache, Catch, Cavity)

 = P(Toothache | Catch, Cavity) P(Catch, Cavity)

 = P(Toothache | Catch, Cavity) P(Catch | Cavity) P(Cavity)

 = P(Toothache | Cavity) P(Catch | Cavity) P(Cavity)

 I.e., 2 + 2 + 1 = 5 independent numbers

In most cases, the use of conditional independence
reduces the size of the representation of the joint
distribution from exponential in n to linear in n.

Conditional independence is our most basic and robust
form of knowledge about uncertain environments.

Summary!

Example 1: I(X,Y|&) and not I(X,Y|Z)!
Example 2: I(X,Y|Z) and not I(X,Y|&) !

conclusion: independence does not imply conditional
independence!!

Bayes' Rule!

Product rule P(a%b) = P(a | b) P(b) = P(b | a) P(a)
The order is unimportant

 ' Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

or in distribution form
 P(Y|X) = P(X|Y) P(Y) / P(X) = 'P(X|Y) P(Y)

Useful for assessing diagnostic probability from causal
probability:

P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(m|s) = P(s|m) P(m) / P(s) = 0.8 " 0.0001 / 0.1 = 0.0008

Note: posterior probability of meningitis still very small!

Normalization!

If we wish to determine the absolute probability of P(C | T) and we
do not know P(T), we can also carry out a complete case analysis
(e.g. for C and ¬C) and use the fact that P(C | T) + P(¬C | T) = 1
(here boolean variables):

50

Normalization!

By substituting into the first equation:

For random variables with multiple values:

 P(Y | X) = !P(X | Y)P(Y)

where ' is the normalization constant needed to
make the entries in P(Y | X) sum to 1.

51

Example!

Your doctor tells you that you have tested
positive for a serious but rare (1/10000)
disease. This test (T) is correct to 99% (1%
false positive & 1% false negative results).
What does this mean for you?

52

Example!

Moral: If the test imprecision is much greater
than the rate of occurrence of the disease, then
a positive result is not as threatening as you
might think.

53

Example: Naïve Bayes Model!

A common model in early diagnosis:
Symptoms are conditionally independent given the

disease (or fault)
Thus, if

X1,…,Xn denote whether the symptoms exhibited by
the patient (headache, high-fever, etc.) and

H denotes the hypothesis about the patients health
then, P(X1,…,Xn,H) = P(H)P(X1|H)…P(Xn|H),
This naïve Bayesian model allows compact

representation
It does embody strong independence assumptions

Bayes' Rule and conditional independence!

P(Cavity | toothache ! catch)
= 'P(toothache % catch | Cavity) P(Cavity)
= 'P(toothache | Cavity) P(catch | Cavity) P(Cavity)

This is an example of a naïve Bayes model:

P(Cause,Effect1, … ,Effectn) = P(Cause) &iP(Effecti|Cause)

Total number of parameters is linear in n

Bayes' Rule!

Product rule P(a%b) = P(a | b) P(b) = P(b | a) P(a)
The order is unimportant

 ' Bayes' rule: P(a | b) = P(b | a) P(a) / P(b)

or in distribution form
 P(Y|X) = P(X|Y) P(Y) / P(X) = 'P(X|Y) P(Y)

Useful for assessing diagnostic probability from causal
probability:

P(Cause|Effect) = P(Effect|Cause) P(Cause) / P(Effect)

E.g., let M be meningitis, S be stiff neck:

P(m|s) = P(s|m) P(m) / P(s) = 0.8 " 0.0001 / 0.1 = 0.0008

Note: posterior probability of meningitis still very small!

Example: Naïve Bayes Model!

A common model in early diagnosis:
Symptoms are conditionally independent given the

disease (or fault)
Thus, if

X1,…,Xn denote whether the symptoms exhibited by
the patient (headache, high-fever, etc.) and

H denotes the hypothesis about the patients health
then, P(X1,…,Xn,H) = P(H)P(X1|H)…P(Xn|H),
This naïve Bayesian model allows compact

representation
It does embody strong independence assumptions

Three prisoners, A, B, and C, are locked in their cells. It
is common knowledge that one of them will be executed
the next day and the others pardoned. Only the
governor knows which one will be executed. Prisoner A
asks the guard a favor:

"Please ask the governor who will be executed, and then
take a message to one of my friends B or C to let him
know that he will be pardoned in the morning."

The guard agrees, and comes back later and tells A that
he gave the pardon message to B. What are A's chances
of being executed, given this information?

58

Fx = “x will be freed”
Ex = “x will be executed”

P(Ea | Fb) = (P(Fb | Ea) * P (Ea)) / P(Fb) = (1*1/3) / 2/3 =1/2 !

F’b = “The guard said that Fb”

P(Ea | F’b) = (P(F’b | Ea) * P (Ea)) / P(F’b) = (1/2*1/3) / 1/3 =1/3

The guard has a choice of whom to inform in the case where A will
be executed

59

Monty hall!

60

All'inizio, è ovvio che:

Supponiamo che la porta scelta è la numero 1.
B = evento "il presentatore apre la porta 3". P(B) = 0.50

Nel caso in cui la macchina sia dietro la porta 1, il presentatore sarà libero di scegliere la porta 2
o 3 casualmente.

 Pertanto, P(B | A1) = 1 / 2
Nel caso in cui la macchina sia dietro la porta 2, il presentatore sarà obbligato ad aprire la porta
3.

 Pertanto P(B | A2) = 1
Nel caso in cui la macchina sia dietro la porta 3, il presentatore sarà obbligato ad aprire la porta
2.

 Pertanto P(B | A3) = 0

61

Bayesian networks"

(R&N: 14.1, 14.2)

Purpose of Bayesian Networks!
Facilitate the description of a collection of beliefs
by making explicit causality relations and
conditional independence among beliefs

Provide a more efficient way (than by using
joint distribution tables) to update belief
strengths when new evidence is observed

Other Names!

 Belief networks
 Probabilistic networks
 Causal networks

Bayesian networks!

A simple, graphical notation for conditional
independence assertions and hence for compact
specification of full joint distributions

Syntax:
a set of nodes, one per variable

a directed, acyclic graph (link) "directly influences")
a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

In the simplest case, conditional distribution
represented as a conditional probability table (CPT)
giving the distribution over Xi for each combination of
parent values

Example!

Cavity

Toothache Catch

Weather

Topology of network encodes conditional
independence assertions:

Weather is independent of other variables
Toothache and Catch are independent given Cavity

Example!

I’m at work, neighbor John calls to say my alarm is
ringing, but neighbor Mary doesn’t call. Sometime
it’s set off by a minor earthquake. Is there a
burglar?

Network topology reflects “causal” knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Variables: Burglar, Earthquake, Alarm,
JohnCalls, MaryCalls

A Simple Belief Network!

Burglary Earthquake

Alarm

MaryCalls JohnCalls

causes

effects

Directed acyclic
graph (DAG)

Intuitive meaning of arrow
from x to y: “x has direct
influence on y”

Nodes are random variables

Assigning Probabilities to Roots!

P(B)

0.001

P(E)

0.002 Burglary Earthquake

Alarm

MaryCalls JohnCalls

Conditional Probability Tables!

B E P(A|B,E)

T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

P(B)

0.001

P(E)

0.002 Burglary Earthquake

Alarm

MaryCalls JohnCalls

Size of the CPT for a
node with k parents: ?

Compactness!

A CPT for Boolean Xi with k Boolean parents has 2k rows
for the combinations of parent values

Each row requires one number p for Xi = true
(the number for Xi = false is just 1-p)

If each variable has no more than k parents, the
complete network requires O(n ! 2k) numbers

I.e., grows linearly with n, vs. O(2n) for the full joint
distribution

For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs.
25-1 = 31)

Conditional Probability Tables!

B E P(A|B,E)

T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

P(B)

0.001

P(E)

0.002

A P(J|A)

T
F

0.90
0.05

A P(M|A)

T
F

0.70
0.01

Burglary Earthquake

Alarm

MaryCalls JohnCalls

What the BN Means!

B E P(A|…)

T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

P(B)

0.001

P(E)

0.002

A P(J|A)

T
F

0.90
0.05

A P(M|A)

T
F

0.70
0.01

Burglary Earthquake

Alarm

MaryCalls JohnCalls

P(x1,x2,…,xn) = (i=1,…,nP(xi|
Parents(Xi))

Calculation of Joint Probability!

B E P(A|…)

T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

P(B)

0.001

P(E)

0.002

A P(J|…)

T
F

0.90
0.05

A P(M|…)

T
F

0.70
0.01

Burglary Earthquake

Alarm

MaryCalls JohnCalls

P(J%M%A%¬B%¬E)?

Calculation of Joint Probability!

B E P(A|…)

T
T
F
F

T
F
T
F

0.95
0.94
0.29
0.001

P(B)

0.001

P(E)

0.002

A P(J|…)

T
F

0.90
0.05

A P(M|…)

T
F

0.70
0.01

Burglary Earthquake

Alarm

MaryCalls JohnCalls

P(J%M%A%¬B%¬E)
= P(J|A)P(M|A)P(A|¬B,¬E)P(¬B)P(¬E)
= 0.9 x 0.7 x 0.001 x 0.999 x 0.998
= 0.00062

76

!! P(J%M%A%¬B%¬E)
= P(J%M|A,¬B,¬E)) P(A%¬B%¬E)
= P(J|A,¬B,¬E)) P(M|A,¬B,¬E)) P(A%¬B%¬E)
(J and M are independent given A)

!! P(J|A,¬B,¬E) = P(J|A)
(J and ¬B%¬E are independent given A)

!! P(M|A,¬B,¬E) = P(M|A)
!! P(A%¬B%¬E) = P(A|¬B,¬E)) P(¬B|¬E)) P(¬E)

 = P(A|¬B,¬E)) P(¬B)) P(¬E)
(¬B and ¬E are independent)

!! P(J%M%A%¬B%¬E) = P(J|A)P(M|A)P(A|
¬B,¬E)P(¬B)P(¬E)

Calculation of Joint Probability!

77

!! P(J%M%A%¬B%¬E) = P(J|A)P(M|A)P(A|
¬B,¬E)P(¬B)P(¬E)

Calculation of Joint Probability!

What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is
independent of Burglary and Earthquake given Alarm or
¬Alarm

•! The beliefs JohnCalls
and MaryCalls are
independent given
Alarm or ¬Alarm

Burglary Earthquake

Alarm

MaryCalls JohnCalls

For example, John does
not observe any burglaries
directly

P(b%j) * P(b) P(j)
P(b%j|a) = P(b|a) P(j|a)

What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is
independent of Burglary and Earthquake given Alarm or
¬Alarm

•! The beliefs JohnCalls
and MaryCalls are
independent given
Alarm or ¬Alarm

Burglary Earthquake

Alarm

MaryCalls JohnCalls

For instance, the reasons why
John and Mary may not call if
there is an alarm are unrelated

P(b%j|a) = P(b|a) P(j|a)
P(j%m|a) = P(j|a) P(m|a)

What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is
independent of Burglary and Earthquake given Alarm or
¬Alarm

•! The beliefs JohnCalls
and MaryCalls are
independent given
Alarm or ¬Alarm

Burglary Earthquake

Alarm

MaryCalls JohnCalls

For instance, the reasons why
John and Mary may not call if
there is an alarm are unrelated

Note that these reasons could
be other beliefs in the network.
The probabilities summarize these
non-explicit beliefs

What The BN Encodes!
Each of the beliefs JohnCalls and MaryCalls is
independent of Burglary and Earthquake given Alarm or
¬Alarm

•! The beliefs JohnCalls
and MaryCalls are
independent given
Alarm or ¬Alarm

Burglary Earthquake

Alarm

MaryCalls JohnCalls

Burglary and
Earthquake are
independent

A node is independent
of its non-descendants
given its parents

Types Of Nodes On A Path!

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Independence Relations in BN!

Given a set E of evidence nodes, two beliefs
connected by an undirected path are
independent if one of the following three
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and
 neither this node, nor any descendant is in E

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Independence Relations In BN!

Given a set E of evidence nodes, two beliefs
connected by an undirected path are
independent if one of the following three
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and
 neither this node, nor any descendant is in E
Gas and Radio are independent
given evidence on SparkPlugs

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Independence Relations In BN!

Given a set E of evidence nodes, two beliefs
connected by an undirected path are
independent if one of the following three
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and
 neither this node, nor any descendant is in E

Gas and Radio are independent
given evidence on Battery

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Independence Relations In BN!

Given a set E of evidence nodes, two beliefs
connected by an undirected path are
independent if one of the following three
conditions holds:
1. A node on the path is linear and in E
2. A node on the path is diverging and in E
3. A node on the path is converging and
 neither this node, nor any descendant is in E

Gas and Radio are independent
given no evidence, but they are
dependent given evidence on
Starts or Moves

Radio

Battery

SparkPlugs

Starts

Gas

Moves

linear

converging

diverging

Decision Networks cont.!

Chance nodes: random variables, as
in BNs
Decision nodes: actions that decision
maker can take
Utility/value nodes: the utility of the
outcome state.

R&N example!

Umbrella Network!

rain Take Umbrella

happiness

take/don’t take P(rain) = 0.4

U(~umb, ~rain) = 100
U(~umb, rain) = -100
U(umb,~rain) = 0
U(umb,rain) = -25

 umbrella

P(umb|take) = 1.0
P(~umb|~take)=1.0

Evaluating Decision Networks!

Set the evidence variables for current state

For each possible value of the decision node:
Set decision node to that value
Calculate the posterior probability of the parent

nodes of the utility node, using BN inference
Calculate the resulting utility for action

return the action with the highest utility

Umbrella Network!

P(rain) = 0.4

umb rain P(umb,rain | take)

0 0 0

0 1 0

1 0 0.6

1 1 0.4

#1

#2:
EU(take)=-10

rain Take Umbrella

happiness

take/don’t take P(rain) = 0.4

U(~umb, ~rain) = 100
U(~umb, rain) = -100
U(umb, ~rain) = 0
U(umb, rain) = -25

 umbrella

P(umb|take) = 1.0
P(~umb|~take)=1.0

Umbrella Network!

P(rain) = 0.4

umb rain P(umb,rain | ~take)

0 0 0,6

0 1 0,4

1 0 0

1 1 0

#1

#2:
EU(~take)=20

rain Take Umbrella

happiness

take/don’t take P(rain) = 0.4

U(~umb, ~rain) = 100
U(~umb, rain) = -100
U(umb,~rain) = 0
U(umb,rain) = -25

 umbrella

P(umb|take) = 1.0
P(~umb|~take)=1.0

Value of Information (VPI)!

Suppose agent’s current knowledge is E. The value of
the current best action + is

the value of the new best action (after new evidence E’
is obtained):

the value of information for E’ is:

94

Properties!

,j,E VPIE(Ej)" 0

VPI is not addittive
VPIE(EJ, Ek) # VPIE(Ej)+ VPIE(Ek)

VPI is order-independent
VPIE(EJ,Ek)=VPIE(Ej)+VPIE,Ej(Ek)
 =VPIE(Ek)+ VPIE,Ek(Ej)

95

Costs!

function INFORMATION-GATHERING-AGENT (percept)
 return an action

static: D, a decision network

integrate percept into D
j <- the value that maximizes VPI (Ej) - Cost (Ej)
if VPI(Ej) > Cost(Ej)

 then return REQUEST(Ej)
else return the best action from D

96

Umbrella Network!

rain

forecast

Take Umbrella

happiness

take/don’t take P(rain) = 0.4

U(~umb, ~rain) = 100
U(~umb, rain) = -100
U(umb,~rain) = 0
U(umb,rain) = -25

 umbrella
P(umb|take) = 1.0
P(~umb|~take)=1.0

R F P(F|R)

0 0 0.8

0 1 0.2

1 0 0.3

1 1 0.7

VOI!

VOI(forecast)=

 P(rainy)EU(+rainy) +
 P(~rainy)EU(+~rainy) –
 EU(+)

the value of information for E’ is:

Umbrella Network!

take/don’t take

F R P(R|F)

0 0 0.8

0 1 0.2

1 0 0.3

1 1 0.7

P(R|F=rainy) = 0.4

rain

forecast

Take Umbrella

happiness

take/don’t take P(rain) = 0.4

U(~umb, ~rain) = 100
U(~umb, rain) = -100
U(umb,~rain) = 0
U(umb,rain) = -25

 umbrella
P(umb|take) = 1.0
P(~umb|~take)=1.0

R F P(F|R)

0 0 0.8

0 1 0.2

1 0 0.3

1 1 0.7

umb rain P(umb,rain | take, rainy)

0 0 0

0 1 0

1 0 0.3

1 1 0.7

#1: EU(take|
rainy) = -17,5

umb rain P(umb,rain | take, ~rainy)

0 0 0

0 1 0

1 0 0.8

1 1 0.2

#3: EU(take|
~rainy) = -5

umb rain P(umb,rain | ~take, rainy)

0 0 0.3

0 1 0.7

1 0 0

1 1 0

#2: EU(~take|
rainy) = -40

umb rain P(umb,rain |~take, ~rainy)

0 0 0.8

0 1 0.2

1 0 0

1 1 0

#4: EU(~take|
~rainy) = 60

(-7+36= 29)

Decision-Making with Probabilistic
Uncertainty "

(R&N: 17.1, 17.2, 17.3)

A complete (but still very simple) example: Finding Juliet!

!!A robot, Romeo, is in Charles’ office and must deliver a letter to
Juliet
!!Juliet is either in her office, or in the conference room. Each
possibility has probability 0.5
!!Traveling takes 5 minutes between Charles’ and Juliet’s office, 10
minutes between Charles’ or Juliet’s office and the conference room

!!To perform his duties well and save battery, the robot wants to
deliver the letter while minimizing the time spent in transit

Juliet’s off.

Conf. room

10min
5min

10min

Charles’ off.

States and Actions in Finding-Juliet Problem!

!!States:
•! S0: Romeo in Charles’ office
•! S1: Romeo in Juliet’s office and Juliet here
•! S2: Romeo in Juliet’s office and Juliet not here
•! S3: Romeo in conference room and Juliet here
•! S4: Romeo in conference room and Juliet not here
•! In this example, S1 and S3 are terminal states

!!Actions:
•! GJO (go to Juliet’s office)
•! GCR (go to conference room)
•! The uncertainty in an action is directly linked to the

uncertainty in Juliet’s location

State/Action Tree!

s0

s3 s4 s2 s1

s3 s1

GJO

GJO

GCR

GCR

!! In this example, only the
terminal states give
positive rewards (say,
100)

!! The cost of each action
(~ negative reward of
reached state) is its
duration

100

100

100

100

10

10 5

10

Juliet’s off.

Conf. room

10min
5min

10min

Charles’ off.

State/Action Tree!

s0

s3 s4 s2 s1

s3 s1

GJO

GJO

GCR

GCR

!! In this example, only the
terminal states give
positive rewards (say, 100)

!! The cost of each action
(~ negative reward of
reached state) is its
duration

80

95

85

90

10

10 5

10

-10 -5

0

State/Action Tree!

s0

s3 s4 s2 s1

s3 s1

GJO

GJO

GCR

GCR

80

95

85

90

10

10 5

10

-10 -5

U(s4) = 80
U(s2) = 85

U(s0) = max{85, 90}

!! The computation of U
(utility) at each non-
terminal node resembles
backing up the values of
an evaluation function in
adversarial search

State/Action Tree!

s0

s3 s4 s2 s1

s3 s1

GJO

GJO

GCR

GCR

80

95

85

90

10

10 5

10

-10 -5

U(s4) = 80 U(s2) = 85

U(s0) = max{85, 90}

!! The computation of U
(utility) at each non-
terminal node resembles
backing up the values of
an evaluation function in
adversarial search

!! The best choice in s0 is to
select GJO

Generalization!
!!Inputs:

•! Initial state s0

•! Action (transition) model
•! Reward R(s) collected in each state s

!!A state is terminal if it has no successor
!!Starting at s0, the agent keeps executing
actions until it reaches a terminal state
!!Its goal is to maximize the expected sum of
rewards collected (additive rewards)
!!Assume for a while that the same state can’t
be reached twice (no cycles)
[finite state space " finite state/action tree]

Utility of a State

The utility of a state s measures its desirability:

!!If s is terminal:
U(s) = R(s)

!!If s is non-terminal,
U(s) = R(s) + maxa!Appl(s)#s’!Succ(s,a)P(s’|a.s)U(s’)
[the reward of s augmented by the expected
sum of rewards collected in future states]

 U(s) = R(s) + maxa!Appl(s) #s’!Succ(s,a)P(s’|a.s)U(s’)

Appl(s) is the set of
all actions applicable

to state s

Succ(s,a) is the set of all
possible states after

applying a to s
P(s’|a.s) is the probability

of being in s’ after
executing a in s

[the reward of s augmented by the expected
sum of rewards collected in future states]

 U(s) = R(s) + maxa!Appl(s)#s’!Succ(s,a) P(s’|a.s)U(s’)

Utility with Action Costs!
U(s) =
 R(s) + maxa!Appl(s)[-cost(a) + #s’!Succ(s,a) P(s’|a.s)U(s’)]

Bellman equation

Optimal Policy!

U(s) = R(s) + maxa!Appl(s)[-cost(a) + #s’!Succ(s,a) P(s’|a.s)U(s’)]

!! A policy is a function that maps each state s
into the action to execute if s is reached

!! The optimal policy P* is the policy that
always lead to maximizing the expected sum
of rewards collected in future states
(Maximum Expected Utility principle)

P*(s) = arg maxa!Appl(s)[-cost(a)+#s’!Succ(s,a) P(s’|a.s)U(s’)]

Issues!

1)! What if the set of states reachable from the
initial state is too large to be entirely
generated (e.g., there is a time limit)?

2)! How to deal with cycles (states that can be
reached multiple times)?

1)! What if the set of states reachable from the
initial state is too large to be entirely
generated (e.g., there is a time limit)?

!! Expand the state/action tree to some depth
h

!! Estimate the utilities of leaf nodes
[Reminiscent of evaluation function in game
trees]

!! Back-up utilities as described before (using
estimated utilities at leaf nodes)

Simple Robot Navigation Problem!

•! In each state, the possible actions are U, D, R, and L

Probabilistic Transition Model!

•! In each state, the possible actions are U, D, R, and L
•! The effect of U is as follows (transition model):

•! With probability 0.8 the robot does the right thing (U, D, R, L)

Probabilistic Transition Model!

•! In each state, the possible actions are U, D, R, and L
•! The effect of U is as follows (transition model):

•!With probability 0.8 the robot does the right thing (U, D, R, L)
•!With probability 0.1 it moves in a direction perpendicular to the
 intended one

Probabilistic Transition Model!

•! In each state, the possible actions are U, D, R, and L
•! The effect of U is as follows (transition model):

•!With probability 0.8 the robot does the right thing (U, D, R, L)
•!With probability 0.1 it moves in a direction perpendicular to the
 intended one
•!If the robot can’t move, it stays in the same square

Markov Property!

The transition properties depend only
on the current state, not on previous
history (how that state was reached)

•! Planned sequence of actions: (U, R)

2

3

1

4 3 2 1

[3,2]

•! Planned sequence of actions: (U, R)
•! U is executed

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

•! Planned sequence of actions: (U, R)
•! U has been executed
•! R is executed

•! There are 9 possible sequences of states
 – called histories – and 6 possible final states
 for the robot!

4 3 2 1

2

3

1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

Probability of Reaching the Goal!

•!P([4,3] | (U,R).[3,2]) =
 P([4,3] | R.[3,3]) x P([3,3] | U.[3,2])
 + P([4,3] | R.[4,2]) x P([4,2] | U.[3,2])

2

3

1

4 3 2 1

Note importance of Markov property
in this derivation

•!P([3,3] | U.[3,2]) = 0.8
•!P([4,2] | U.[3,2]) = 0.1

•!P([4,3] | R.[3,3]) = 0.8
•!P([4,3] | R.[4,2]) = 0.1

•!P([4,3] | (U,R).[3,2]) = 0.65

Utility Function!

•! [4,3] provides power supply
•! [4,2] is a sand area from which the robot cannot escape

-1

+1

2

3

1

4 3 2 1

Utility Function!

•! [4,3] provides power supply
•! [4,2] is a sand area from which the robot cannot escape
•! The robot needs to recharge its batteries

-1

+1

2

3

1

4 3 2 1

Utility Function!

•! [4,3] provides power supply
•! [4,2] is a sand area from which the robot cannot escape
•! The robot needs to recharge its batteries
•! [4,3] or [4,2] are terminal states

-1

+1

2

3

1

4 3 2 1

Utility of a History!

•! [4,3] provides power supply
•! [4,2] is a sand area from which the robot cannot escape
•! The robot needs to recharge its batteries
•! [4,3] or [4,2] are terminal states
•! The utility of a history is defined by the utility of the last
 state (+1 or –1) minus n/25, where n is the number of moves

-1

+1

2

3

1

4 3 2 1

Utility of an Action Sequence!

•! Consider the action sequence (U,R) from [3,2]

-1

+1

2

3

1

4 3 2 1

Utility of an Action Sequence!

•! Consider the action sequence (U,R) from [3,2]
•! A run produces one among 7 possible histories, each with some
 probability

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

-1

+1

2

3

1

4 3 2 1

Utility of an Action Sequence!

-1

+1

•! Consider the action sequence (U,R) from [3,2]
•! A run produces one among 7 possible histories, each with some
 probability
•! The utility of the sequence is the expected utility of the histories:

 U = #hUh P(h)

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

Optimal Action Sequence!

-1

+1

•! Consider the action sequence (U,R) from [3,2]
•! A run produces one among 7 possible histories, each with some
 probability
•! The utility of the sequence is the expected utility of the histories
•! The optimal sequence is the one with maximal utility

2

3

1

4 3 2 1

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

Optimal Action Sequence!

-1

+1

•! Consider the action sequence (U,R) from [3,2]
•! A run produces one among 7 possible histories, each with some
 probability
•! The utility of the sequence is the expected utility of the histories
•! The optimal sequence is the one with maximal utility
•! But is the optimal action sequence what we want to
 compute?

2

3

1

4 3 2 1

only if the sequence is executed blindly!

[3,2]

[4,2] [3,3] [3,2]

[3,3] [3,2] [4,1] [4,2] [4,3] [3,1]

Therefore, a solution must specify what the
agent should do for any state that the agent
might reach.

A solution of this kind is called a policy.

134

Terminal States, Rewards, and Costs

!! Two terminal states: (4,2) and (4,3)
!! Rewards:

•! R(4,3) = +1 [The robot finds gold]
•! R(4,2) = -1 [The robot gets trapped in quick sands]
•! R(s) = -0.04 in all other states

!! Actions have zero cost
[actually, they are encoded in the negative rewards of non-
terminal states]

3

2

1

4 3 2 1

+1

-1

-.04

-.04 -.04 -.04

-.04

-.04

-.04

-.04

-.04

Utility of a State

The utility of a state s measures its desirability:

!!If s is terminal:
U(s) = R(s)

!!If s is non-terminal,
U(s) = R(s) + maxa!Appl(s)#s’!Succ(s,a)P(s’|a.s)U(s’)
[the reward of s augmented by the expected
sum of rewards collected in future states]

State Utilities

!! The utility of a state s is the maximal expected amount of
reward that the robot will collect from s and future states by
executing some action in each encountered state, until it
reaches a terminal state (infinite horizon)

!! Under the Markov and infinite horizon assumptions, the utility
of s is independent of when and how s is reached
[It only depends on the possible sequences of states after s,
not on the possible sequences before s]

3

2

1

4 3 2 1

+1

-1 0.66

0.39 0.61 0.66 0.71

0.76

0.87 0.81 0.92

Policy (Reactive/Closed-Loop Strategy)!

•! A policy (is a complete mapping from states to actions

-1

+1

2

3

1

4 3 2 1

Optimal Policies for Various R(s)!

+1

-1

+1

-1

R(s) = -0.01

+1

-1

+1

-1

R(s) = -0.04 R(s) = -2

R(s) > 0

Repeat:
$! s ! sensed state
$! If s is terminal then exit
$! a ! ((s)
$! Perform a

Reactive Agent Algorithm!

-1

+1

•! A policy (is a complete mapping from states to actions
•! The optimal policy (* is the one that always yields a
 history (ending at a terminal state) with maximal
 expected utility

2

3

1

4 3 2 1

Makes sense because of Markov property

Note that [3,2] is a “dangerous”
state that the optimal policy

tries to avoid

-1

+1

•! A policy (is a complete mapping from states to actions
•! The optimal policy (* is the one that always yields a
 history with maximal expected utility

2

3

1

4 3 2 1

This problem is called a
Markov Decision Problem (MDP)

How to compute (*?

Additive Utility!

 History H = (s0,s1,…,sn)
 The utility of H is additive iff:
 U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = # R(i)

Reward

Additive Utility!

 History H = (s0,s1,…,sn)
 The utility of H is additive iff:
 U(s0,s1,…,sn) = R(0) + U(s1,…,sn) = # R(i)
 Robot navigation example:

R(n) = +1 if sn = [4,3]
R(n) = -1 if sn = [4,2]
R(i) = -1/25 if i = 0, …, n-1

3

2

1

4 3 2 1

+1

-1

Defining Equations

!! If s is terminal:
 U(s) = R(s)

!! If s is non-terminal:
 U(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’)
[Bellman equation]

!! P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’)

3

2

1

4 3 2 1

+1

-1

Defining Equations

!! If s is terminal:
 U(s) = R(s)

!! If s is non-terminal:
 U(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’)
 [Bellman equation]

!! P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’)

The utility of s depends on
the utility of other states s’
(possibly, including s), and
vice versa

The equations
are non-linear

Value Iteration Algorithm

1.! Initialize the utility of each non-terminal states to U0(s) = 0

2.! For t = 0, 1, 2, ... Do

Ut+1(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)Ut(s’)
for each non-terminal state s

3

2

1

4 3 2 1

+1

-1 0

0 0 0 0

0

0 0 0 3

2

1

4 3 2 1

+1

-1 0.66

0.39 0.61 0.66 0.71

0.76

0.87 0.81 0.92

3

2

1

4 3 2 1

+1

-1
3

2

1

4 3 2 1

+1

-1 0.66

0.39 0.61 0.66 0.71

0.76

0.87 0.81 0.92

Value Iteration Algorithm!

1.! Initialize the utility of each non-terminal states to U0(s) = 0

2.! For t = 0, 1, 2, ... do

 Ut+1(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|
a.s)Ut(s’)
for each non-terminal state s

3.! For each non-terminal state s do

 P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’)

3

2

1

4 3 2 1

+1

-1
3

2

1

4 3 2 1

+1

-1 0.66

0.39 0.61 0.66 0.71

0.76

0.87 0.81 0.92

Value Iteration Algorithm

1.! Initialize the utility of each non-terminal states to U0(s) = 0

2.! For t = 1, 2, ... do

 Ut+1(s) = R(s) + maxa!Appl(s)Ss’!Succ(s,a)P(s’|
a.s)Ut(s’)
for each non-terminal state s

3.! For each non-terminal state s do

 P*(s) = arg maxa!Appl(s)Ss’!Succ(s,a)P(s’|a.s)U(s’)

(s) = 0

3. For each non-terminal state s do

Value iteration is essentially the same as
computing the best move from each state using a
state/action tree expanded to a large depth h (with
estimated utilities of the non-terminal leaf nodes
set to 0)

By doing the computation for all states
simultaneously, it avoids much redundant
computation

Convergence of Value Iteration!

3

2

1

4 3 2 1

+1

-1 0.66

0.39 0.61 0.66 0.71

0.76

0.87 0.81 0.92

Convergence of Value Iteration
!!If:

•! The number of states is finite
•! There exists at least one terminal state that gives a

positive reward and is reachable with non-zero
probability from every other non-terminal state
(connectivity of the state space)

•! R(s) - 0 at every non-terminal state
•! The cost of every action is . 0

!!Then value iteration converges toward an optimal
policy if we wait long enough

!!But what if the above conditions are not verified?

151

