
Lezione n.

Corso di Laurea:

Insegnamento:

Email:

A.A. 2014-2015

Silvia Rossi

Agent as Intentional Systems

2

Informatica

Sistemi

multi-agente

silrossi@unina.it

Agenti e Ambienti

(RN, WS)

2

Environments – Accessible vs. inaccessible

3

•  An accessible environment is one in which the agent can
obtain complete, accurate, up-to-date information about the
environment’s state

•  Most moderately complex environments (including, for
example, the everyday physical world and the Internet) are
inaccessible

•  The more accessible an environment is, the simpler it is to
build agents to operate in it

•  Quality of information ! quality of action decisions

•  Environment more accessible ! agent easier to construct

4

Environments – Deterministic vs. non-deterministic

•  A deterministic environment is one in which any action
has a single guaranteed effect — there is no uncertainty
about the state that will result from performing an action

•  The physical world can to all intents and purposes be
regarded as non-deterministic

•  Agents have limited spheres of influence and limited
sensoric capabilities  

 ! no complete control  

 ! non-determinism (from an individual
agent’s
point of view)

even in “overall deterministic” environments

•  Non-determinism ! Actions can fail

5

Environments - Episodic vs. non-episodic

•  In an episodic environment, the performance of an agent
is dependent on a number of discrete episodes, with no
link between the performance of an agent in different
scenarios

•  Episodic environments are simpler from the agent
developer’s perspective because the agent can decide
what action to perform based only on the current
episode — it need not reason about the interactions
between this and future episodes

6

Environments - Static vs. dynamic

•  A static environment is one that can be assumed to
remain unchanged except by the performance of actions
by the agent

–  Predictable. Information gathering:  

 Once ! preconditions established ! plan ! execution

•  A dynamic environment is one that has other processes

operating on it, and which hence changes in ways
beyond the agent’s control

–  Unpredictable ! If precond. φ for action α  

 holds at time t0 ! no guarantee for φ at time t1 ! need  
 for constant information gathering ! action plans can  
 fail because preconditions change over time

7

Environments – Discrete vs. continuous

•  An environment is discrete if there are a fixed, finite
number of actions and percepts in it

•  Russell and Norvig give a chess game as an example of
a discrete environment, and taxi driving as an example
of a continuous one

•  Continuous environments have a certain level of
mismatch with computer systems

•  Discrete environments could in principle be handled by
a kind of “lookup table”

Environment types

 Chess with Chess without Taxi driving
 a clock a clock

Fully observable Yes Yes No
Deterministic Strategic Strategic No
Episodic No No No
Static Semi Yes No
Discrete Yes Yes No
Single agent No No No

•  The environment type largely determines the agent design
•  The real world is (of course) partially observable,

stochastic, sequential, dynamic, continuous, multi-agent

8

Agenti Come Sistemi Intenzionali

(W)

9

10

Agents as Intentional Systems

•  When explaining human activity, it is often useful to make
statements such as the following: 

Janine took her umbrella because she

believed it was going to rain. 

Michael worked hard because he wanted

to possess a PhD.

•  These statements make use of a folk psychology, by which
human behavior is predicted and explained through the
attribution of attitudes, such as believing and wanting (as
in the above examples), hoping, fearing, and so on

•  The attitudes employed in such folk psychological
descriptions are called the intentional notions

11

Agents as Intentional Systems

•  The philosopher Daniel Dennett coined the term intentional
system to describe entities ‘whose behavior can be
predicted by the method of attributing belief, desires and
rational acumen’

•  Dennett identifies different ‘grades’ of intentional system: 
‘A first-order intentional system has beliefs and desires
(etc.) but no beliefs and desires about beliefs and desires.
…A second-order intentional system is more sophisticated;
it has beliefs and desires (and no doubt other intentional
states) about beliefs and desires (and other intentional
states) — both those of others and its own’

12

Agents as Intentional Systems

•  Is it legitimate or useful to attribute
beliefs, desires, and so on, to
computer systems?

13

Agents as Intentional Systems

•  McCarthy argued that there are occasions when the
intentional stance is appropriate:

‘To ascribe beliefs, free will, intentions, consciousness, abilities, or wants
to a machine is legitimate when such an ascription expresses the same

information about the machine that it expresses about a person.

It is useful when the ascription helps us understand the structure of the
machine, its past or future behavior, or how to repair or improve it. It is

perhaps never logically required even for humans, but expressing
reasonably briefly what is actually known about the state of the machine

in a particular situation may require mental qualities or qualities
isomorphic to them. Theories of belief, knowledge and wanting can be

constructed for machines in a simpler setting than for humans, and later
applied to humans. Ascription of mental qualities is most straightforward

for machines of known structure such as thermostats and computer
operating systems, but is most useful when applied to entities whose

structure is incompletely known’.

14

Agents as Intentional Systems

•  What objects can be described by the intentional
stance?

•  As it turns out, more or less anything can. . .
consider a light switch: 

•  But most adults would find such a description
absurd! 
Why is this?

‘It is perfectly coherent to treat a light switch as a
(very cooperative) agent with the capability of

transmitting current at will, who invariably transmits
current when it believes that we want it transmitted
and not otherwise; flicking the switch is simply our

way of communicating our desires’. (Yoav Shoham)

15

Agents as Intentional Systems

•  The answer seems to be that while the intentional stance
description is consistent, 

. . . it does not buy us anything, since we essentially

understand the mechanism sufficiently to have a simpler,

mechanistic description of its behavior.

(Yoav Shoham)

•  Put crudely, the more we know about a system, the less we
need to rely on animistic, intentional explanations of its behavior

•  But with very complex systems, a mechanistic, explanation of its
behavior may not be practicable

•  As computer systems become ever more complex, we need
more powerful abstractions and metaphors to explain their
operation — low level explanations become impractical. The
intentional stance is such an abstraction

16

Agents as Intentional Systems

•  The intentional notions are thus abstraction tools, which provide
us with a convenient and familiar way of describing, explaining,
and predicting the behavior of complex systems

•  Remember: most important developments in computing are
based on new abstractions:

–  procedural abstraction

–  abstract data types

–  objects

Agents, and agents as intentional systems, represent a further,
and increasingly powerful abstraction

•  So agent theorists start from the (strong) view of agents as
intentional systems: one whose simplest consistent description
requires the intentional stance

17

Agents as Intentional Systems

•  This intentional stance is an abstraction tool — a convenient
way of talking about complex systems, which allows us to
predict and explain their behavior without having to
understand how the mechanism actually works

•  Now, much of computer science is concerned with looking
for abstraction mechanisms (witness procedural abstraction,
ADTs, objects,…) 

So why not use the intentional stance as an

abstraction tool in computing — to explain,

understand, and, crucially, program computer
systems?

•  This is an important argument in favor of agents

18

Agents as Intentional Systems

•  Other 3 points in favor of this idea:

•  Characterizing Agents:

–  It provides us with a familiar, non-technical way of
understanding & explaining agents

•  Nested Representations:

–  It gives us the potential to specify systems that

include representations of other systems

–  It is widely accepted that such nested

representations are essential for agents that must
cooperate with other agents

19

Agents as Intentional Systems

•  Post-Declarative Systems:

–  This view of agents leads to a kind of post-declarative

programming:

•  In procedural programming, we say exactly what a system should do

•  In declarative programming, we state something that we want to achieve,

give the system general info about the relationships between objects, and
let a built-in control mechanism (e.g., goal-directed theorem proving) figure
out what to do

•  With agents, we give a very abstract specification of the system, and let the
control mechanism figure out what to do, knowing that it will act in
accordance with some built-in theory of agency (e.g., the well-known
Cohen-Levesque model of intention)

20

An aside…

•  We find that researchers from a more mainstream computing
discipline have adopted a similar set of ideas…

•  In distributed systems theory, logics of knowledge are used in
the development of knowledge based protocols

•  The rationale is that when constructing protocols, one often
encounters reasoning such as the following: 

IF
 process i knows process j has 

 received message m1  

THEN process i should send process j 

 the message m2

•  In DS theory, knowledge is grounded — given a precise
interpretation in terms of the states of a process; we’ll examine
this point in detail later

The Intentional Stance

•  Intentional Stance: Attributing attitudes (beliefs, desires,
whishes) to systems whose precise internal function is
unknown. (Controversial example: Light switch)

•  Physical Stance: Observe ! analyze function
principles (induce general description) ! predict future
behavior (through deduction). (Example: Apple and
Newton‘s second law)

•  Design Stance: Use knowledge about design
intention of an object to predict behavior (Example:
Alarm Clock)

Most real world systems too complex for physical or
design stance. ! Why not use intentional stance as
means of complexity reduction (Compare Obj.Orient.)

Architetture per Agenti

(W, RN)

22

23

Abstract Architecture for Agents

•  Assume the environment may be in any of a finite
set E of discrete, instantaneous states: 

•  Agents are assumed to have a repertoire of
possible actions available to them, which transform
the state of the environment: 

•  A run, r, of an agent in an environment is a
sequence of interleaved environment states and
actions:

24

Abstract Architecture for Agents

•  Let:

– R be the set of all such possible finite

sequences (over E and Ac)

– RAc be the subset of these that end with an

action

– RE be the subset of these that end with an

environment state

25

State Transformer Functions

•  A state transformer function represents
behavior of the environment:

•  Note that environments are…
–  history dependent
–  non-deterministic

•  If τ(r)=∅, then there are no possible successor
states to r. In this case, we say that the system
has ended its run

•  Formally, we say an environment Env is a triple
Env =〈E,e0,τ〉 where: E is a set of environment
states, e0∈ E is the initial state, and τ is a state
transformer function

26

Agents

•  Agent is a function which maps runs to actions: 

An agent makes a decision about what action to
perform based on the history of the system that
it has witnessed to date. Let AG be the set of
all agents

27

Systems

•  A system is a pair containing an agent and
an environment

•  Any system will have associated with it a
set of possible runs; we denote the set of
runs of agent Ag in environment Env by
R(Ag, Env)

•  (We assume R(Ag, Env) contains only
terminated runs)

28

Systems

•  Formally, a sequence

represents a run of an agent Ag in
environment Env =〈E,e0,τ〉 if:

1.  e0 is the initial state of Env
2.  α0 = Ag(e0); and
3.  For u > 0,

Agent functions and programs

•  Given an agent architecture
•  An agent is completely specified by the agent

function mapping percept sequences to actions
•  One agent function (or a small equivalence class) is

rational

•  Aim: find a way to implement the rational agent
function concisely

29

30

Purely Reactive Agents

•  Some agents decide what to do without
reference to their history — they base
their decision making entirely on the
present, with no reference at all to the
past

•  We call such agents purely reactive:

•  A thermostat is a purely reactive agent

31

Perception

•  Now introduce perception system:

Environment

Agent
see action

32

Perception

•  The see function is the agent’s ability to
observe its environment, whereas the
action function represents the agent’s
decision making process

•  Output of the see function is a percept:
see : E → Per

which maps environment states to percepts,
and action is now a function

action : Per* → A
which maps sequences of percepts to

actions

Table-lookup agent

•  \input{algorithms/table-agent-algorithm}

•  Drawbacks:
–  Huge table (es. Chess 35^100 entry)
–  Take a long time to build the table
–  No autonomy
–  Even with learning, need a long time to learn the table

entries
33

Agent types

•  Four basic types in order of increasing
generality:

•  Simple reflex agents
•  Model-based reflex agents
•  Goal-based agents
•  Utility-based agents

34

Simple reflex agents

35

Simple reflex agents

•  Vacuum-cleaner world

•  function REFLEX_AGENT([location,status]): returns an
action

 if status = Dirty then return Suck
 else if location = A then return Right
 else if location = B then return Left

36

Simple reflex agents

function SIMPLE-REFLEX-AGENT(PERCEPT): returns an
action

static: rules, a set of condition-action rules

state <- INTERPRET-INPUT(percept)

rule <- RULE-MATCH(state,rules)

action <- RULE-ACTION[rule]

return action

37

Model-based reflex agents

38

Model of the world, prediction, evolution of the internal state

Agents with State

Internal data structure used to record information about the
environment state and history. 

Let I be the set of all internal states of the agent.

The perception function is:

see : E → Per

A function next maps an internal state and percept to an
internal state:

next : I × Per → I

The action-selection function action is a mapping

action : I → Ac
from internal states to actions.

39

Agent Control Loop

1.  Agent starts in some initial internal state i0

2.  Observes its environment state e, and generates a
percept see(e)

3.  Internal state of the agent is then updated via next
function, becoming next(i0, see(e))

4.  The action selected by the agent is action(next(i0,
see(e)))

5.  Goto 2

40

Tasks for Agents

•  We build agents in order to carry out tasks
for us

•  The task must be specified by us…
•  But we want to tell agents what to do

without telling them how to do it

41

Achievement & Maintenance Tasks

Two most common types of tasks are
achievement tasks and maintenance
tasks:

1. Achievement tasks are those of the
form “achieve state of affairs φ”

2. Maintenance tasks are those of the
form “maintain state of affairs ψ”

42

Achievement & Maintenance Tasks

An achievement task is specified by a set G of “good” or “goal”
states: G ⊆ E

The agent succeeds if it is guaranteed to bring about at least
one of these states (we do not care which one — they are all
considered equally good).

A maintenance goal is specified by a set B of “bad” states: B ⊆
E 
The agent succeeds in a particular environment if it manages to
avoid all states in B — if it never performs actions which result
in any state in B occurring

43

Goal-based agents

44

Goal-based Agents

45

•  No state-action rules, but goals
•  Proactivity vs. reactivity
•  To achieve the goals:

- Generate sequence of actions
-  Search, Planning, Reasoning
-  Sense-Plan-Act

46

Utility Functions over States

•  One possibility: associate utilities with
individual states — the task of the agent
is then to bring about states that
maximize utility

•  A task specification is a function
u : E → R

which associates a real number with every
environment state

47

Utility Functions over States

•  But what is the value of a run…
– minimum utility of state on run?
– maximum utility of state on run?
– sum of utilities of states on run?
– average?

•  Disadvantage: difficult to specify a long
term view when assigning utilities to
individual states
(One possibility: a discount for states later
on.)

48

Utilities over Runs

•  Another possibility: assigns a utility not to
individual states, but to runs themselves:

u : R → R
•  Such an approach takes an inherently long

term view
•  Other variations: incorporate probabilities

of different states emerging
•  Difficulties with utility-based approaches:

– where do the numbers come from?
– we don’t think in terms of utilities!
– hard to formulate tasks in these terms

Utility-based agents

49

50

Utility in the Tileworld

•  Simulated two dimensional grid environment on
which there are agents, tiles, obstacles, and holes

•  An agent can move in four directions, up, down, left,
or right, and if it is located next to a tile, it can push it

•  Holes have to be filled up with tiles by the agent. An
agent scores points by filling holes with tiles, with the
aim being to fill as many holes as possible

•  TILEWORLD changes with the random appearance
and disappearance of holes

•  Utility function defined as follows:

51

The Tileworld, Some Examples

•  From Goldman and Rosenschein, AAAI-94:

52

The Tileworld, Some Examples

•  From Goldman and Rosenschein, AAAI-94:

53

Expected Utility & Optimal Agents

•  Write P(r | Ag, Env) to denote probability
that run r occurs when agent Ag is placed
in environment Env
Note:

•  Then optimal agent Agopt in an environment
Env is the one that maximizes expected
utility:

Utility-based Agents

54

•  Not only goals, but utility
•  Function that maps states into numbers:

usefulness
•  Actions maximizing the expected utility

Utility-based Agent

55

