Silvia Rossi

Non-cooperative game theory (2)

Lezione n. 10

Corso di Laurea:
Informatica
Insegnamento:
Sistemi
multi-agente

Email:

silrossi@unina.it

A.A. 2014-2015

Distributed Rational Decision Making Game Theory (2)

(W: 3, MAS: 3.2.4, 3.3.3, 3.4.1, 5.1.2, 5.1.3)

It would be a pretty bad idea to play any deterministic strategy in matching pennies

Idea: confuse the opponent by playing randomly
Define a strategy si for agent i as any probability distribution over the actions Ai.
pure strategy: only one action is played with positive probability mixed strategy: more than one action is played with positive probability
these actions are called the support of the mixed strategy

Let the set of all strategies for i be Si
Let the set of all strategy profiles be $S=S 1 \times \ldots \times S n$.

Utility under Mixed Strategies

What is your payoff if all the players follow mixed strategy profile $s \in S$?

We can't just read this number from the game matrix anymore: we won't always end up in the same cell

Instead, use the idea of expected utility from decision theory:

$$
\begin{gathered}
u_{i}(s)=\sum_{a \in A} u_{i}(a) \operatorname{Pr}(a \mid s) \\
\operatorname{Pr}(a \mid s)=\prod_{j \in N} s_{j}\left(a_{j}\right)
\end{gathered}
$$

si(ai) we denote the probability that an action ai will be played under mixed strategy si.

Every finite game has a Nash equilibrium! [Nash, 1950]
e.g., matching pennies: both players play heads/tails 50\%/50\%

Computing Mixed Nash Equilibriar Battle of the Sexes

- It's hard in general to compute Nash equilibria, but it's easy when you can guess the support
- For BoS, let's look for an equilibrium where all actions are part of the support

	B	F
	2,1	0,0
F	2,1	0
	0,0	1,2

- Let player 2 play B with p, F with 1-p.
- If player 1 best-responds with a mixed strategy, player

2 must make him indifferent between F and B (why?)

Computing Mixed Nash Equilibriar Battle of the Sexes

- Let player 2 play B with p, F with 1-p.
- If player 1 best-responds with a mixed strategy, player 2 must make him indifferent between F and B (why?)

Computing Mixed Nash Equilibriar Battle of the Sexes

-Likewise, player 1 must randomize to make player 2 indifferent.
-Why is player 1 willing to randomize?

- Let player 1 play B with q, F with ($1-\mathrm{q}$)

	B	F
B	2,1	0,0
	0,0	1,2

$$
\begin{aligned}
u 2(B) & =u 2(F) \\
q+0(1-q) & =0 q+2(1-q) \\
q & =2 / 3
\end{aligned}
$$

Thus the mixed strategies $(2 / 3,1 / 3),(1 / 3,2 / 3)$ are a Nash equilibrium.

Interpreting Mixed Strategy Equilibria

What does it mean to play a mixed strategy? Different interpretations:
-Randomize to confuse your opponent

- consider the matching pennies example
-Players randomize when they are uncertain about the other's action
- consider battle of the sexes
-Mixed strategies are a concise description of what might happen in repeated play: count of pure strategies in the limit
-Mixed strategies describe population dynamics: 2 agents chosen from a population, all having deterministic strategies. MS is the probability of getting an agent who will play one PS or another.

Computing Nash Equilibria

How hard is it to compute the Nash equilibria of a game?

Two-player, zero-sum games:
The Nash equilibrium problem for such games can be expressed as a linear program (LP), which means that equilibria can be computed in polynomial time.

Nash equilibrium of a two-player, general sum game, cannot be formulated as a linear program.
Essentially, this is because the two players' interests are no longer diametrically opposed.
NP-complete

Computing Nash Equilibria

The following problems are NP-hard when applied to Nash equilibria: uniqueness, Pareto optimality, guaranteed social welfare.

Computing all of the equilibria of a two-player, generalsum game requires worst-case time that is exponential in the number of actions for each player.
-The maxmin strategy of player i in an n-player, general-sum game is a strategy that maximizes i's worst-case payoff

- in the situation where all the other players happen to play the strategies which cause the greatest harm to i .
-The maxmin value (or security level) of the game for player i is that minimum amount of payoff guaranteed by a maxmin strategy.

Let $G=<\{1,2\},(A i),(\geq i)>$ a zero sum-game

Action $x^{*} \in A 1$ is maxminimizer for 1 :
$\forall x \in A 1 \quad \min u_{1}\left(x^{*}, y\right)>\min u_{1}(x, y)$
Action $\mathrm{y}^{*} \in \mathrm{~A} 2$ is maxminimizer for 2 :
$\forall y \in A 2 \quad \min u_{2}\left(x, y^{*}\right)>\min u_{2}(x, y)$
The best case among the worsts

Action $x^{*} \in A 1$ is maxminimizer for 1 :
$\forall x \in A 1 \min u_{1}\left(x^{*}, y\right) \geq \min u_{1}(x, y)$
maximises the minimum that I can guarantee x^{*} is a security strategy for 1

Solves for $1 \max _{x} \min _{y} u_{1}(x, y)$
Solves for $2 \max _{y} \min _{x} u_{2}(x, y)$
$\left(x^{*}, y^{*}\right)$ is a N.eq for G, iff:
x^{*} is a maxminimizer for 1 ;
y^{*} is a maxminimizer for 2
$\max _{x} \min _{y} \mathrm{u}_{1}(\mathrm{x}, \mathrm{y})$
$\max _{y} \min _{x} \mathrm{u}_{2}(\mathrm{x}, \mathrm{y})$
$\mathrm{u}_{1}\left(\mathrm{x}^{*}, \mathrm{y}^{*}\right)$

Solves for 1

$\max _{x} \min _{y} \mathrm{u}_{1}(\mathrm{x}, \mathrm{y})=$ max\{
$\min \left\{u_{1}(x, y) \mid y \in A_{2}\right\}$ $\left.\mid x \in A_{1}\right\}$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	$2,-2$	$2,-2$	$3,-3$	$1,-1$	$1,-1$
x_{2}	$3,-3$	$5,-5$	$4,-4$	$6,-6$	$4,-4$
x_{3}	$5,-5$	$2,-2$	$4,-4$	$3,-3$	$3,-3$
x_{4}	$6,-6$	$8,-8$	$5,-5$	$7,-7$	$5,-5$
x_{5}	$3,-3$	$5,-5$	$4,-4$	$2,-2$	$3,-3$
x_{6}	$4,-4$	$3,-3$	$6,-6$	$5,-5$	$4,-4$

Solves for 1

$\max _{x} \min _{y} u_{1}(x, y)=$
$\max \{$
$\min \left\{u_{1}(x, y) \mid y \in A_{2}\right\}$
$\left.\mid x \in A_{1}\right\}$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	$2,-2$	$2,-2$	$3,-3$	$1,-1$	$1,-1$
x_{2}	$3,-3$	$5,-5$	$4,-4$	$6,-6$	$4,-4$
x_{3}	$5,-5$	$2,-2$	$4,-4$	$3,-3$	$3,-3$
x_{4}	$6,-6$	$8,-8$	$5,-5$	$7,-7$	$5,-5$
x_{5}	$3,-3$	$5,-5$	$4,-4$	$2,-2$	$3,-3$
x_{6}	$4,-4$	$3,-3$	$6,-6$	$5,-5$	$4,-4$

Solves for 1

$\max _{x} \min _{y} \mathrm{u}_{1}(\mathrm{x}, \mathrm{y})=$ max\{ $\min \left\{u_{1}(x, y) \mid y \in A_{2}\right\}$ $\left.\mid x \in A_{1}\right\}$
$\mathrm{x}_{1}=\min _{\mathrm{y}} \mathrm{u}_{1}\left(\mathrm{x}_{1}, \mathrm{y}\right)=1$
$x_{2}=\min _{y} u_{1}\left(x_{2}, y\right)=3$
$\mathrm{x}_{6}=\min _{\mathrm{y}} \mathrm{u}_{1}\left(\mathrm{x}_{6}, \mathrm{y}\right)=3$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	$2,-2$	$2,-2$	$3,-3$	$1,-1$	$1,-1$
x_{2}	$3,-3$	$5,-5$	$4,-4$	$6,-6$	$4,-4$
x_{3}	$5,-5$	$2,-2$	$4,-4$	$3,-3$	$3,-3$
x_{4}	$6,-6$	$8,-8$	$5,-5$	$7,-7$	$5,-5$
x_{5}	$3,-3$	$5,-5$	$4,-4$	$2,-2$	$3,-3$
x_{6}	$4,-4$	$3,-3$	$6,-6$	$5,-5$	$4,-4$

Solves for 1

$\max _{x} \min _{y} \mathrm{u}_{1}(\mathrm{x}, \mathrm{y})=$ max\{ $\min \left\{u_{1}(x, y) \mid y \in A_{2}\right\}$ $\left.\mid x \in A_{1}\right\}$
$\mathrm{x}_{1}=\min _{\mathrm{y}} \mathrm{u}_{1}\left(\mathrm{x}_{1}, \mathrm{y}\right)=1$
$\mathrm{x}_{2}=\min _{\mathrm{y}} \mathrm{u}_{1}\left(\mathrm{x}_{2}, \mathrm{y}\right)=3$
$\mathrm{x}_{6}=\min _{\mathrm{y}} \mathrm{u}_{1}\left(\mathrm{x}_{6}, \mathrm{y}\right)=3$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	$2,-2$	$2,-2$	$3,-3$	$1,-1$	$1,-1$
x_{2}	$3,-3$	$5,-5$	$4,-4$	$6,-6$	$4,-4$
x_{3}	$5,-5$	$2,-2$	$4,-4$	$3,-3$	$3,-3$
x_{4}	$6,-6$	$8,-8$	$5,-5$	$7,-7$	$5,-5$
x_{5}	$3,-3$	$5,-5$	$4,-4$	$2,-2$	$3,-3$
x_{6}	$4,-4$	$3,-3$	$6,-6$	$5,-5$	$4,-4$

$\max =5$ for $\mathrm{x}^{*}=\mathrm{x}_{4}$

Solves for 2
$\max _{y} \min _{x} \mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=$

$$
\begin{aligned}
& \max \{ \\
& \min \left\{u_{2}(x, y) \mid x \in A_{1}\right\} \\
& \left.\mid y \in A_{2}\right\}
\end{aligned}
$$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	$2,-2$	$2,-2$	$3,-3$	$1,-1$	$1,-1$
x_{2}	$3,-3$	$5,-5$	$4,-4$	$6,-6$	$4,-4$
x_{3}	$5,-5$	$2,-2$	$4,-4$	$3,-3$	$3,-3$
x_{4}	$6,-6$	$8,-8$	$5,-5$	$7,-7$	$5,-5$
x_{5}	$3,-3$	$5,-5$	$4,-4$	$2,-2$	$3,-3$
x_{6}	$4,-4$	$3,-3$	$6,-6$	$5,-5$	$4,-4$

Solves for 2
$\max _{x} \min _{y} \mathrm{u}_{2}(\mathrm{x}, \mathrm{y})=$ max\{
$\min \left\{u_{1}(x, y) \mid x \in A_{1}\right\}$ $\left.\mid y \in A_{2}\right\}=-5$

For y_{5}

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	$2,-2$	$2,-2$	$3,-3$	$1,-1$	$1,-1$
x_{2}	$3,-3$	$5,-5$	$4,-4$	$6,-6$	$4,-4$
x_{3}	$5,-5$	$2,-2$	$4,-4$	$3,-3$	$3,-3$
x_{4}	$6,-6$	$8,-8$	$5,-5$	$7,-7$	$5,-5$
x_{5}	$3,-3$	$5,-5$	$4,-4$	$2,-2$	$3,-3$
x_{6}	$4,-4$	$3,-3$	$6,-6$	$5,-5$	$4,-4$

Equilibrium $(5,-5)$
$\left(x_{4}, y_{5}\right)$

	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}
x_{1}	$2,-2$	$2,-2$	$3,-3$	$1,-1$	$1,-1$
x_{2}	$3,-3$	$5,-5$	$4,-4$	$6,-6$	$4,-4$
x_{3}	$5,-5$	$2,-2$	$4,-4$	$3,-3$	$3,-3$
x_{4}	$6,-6$	$8,-8$	$5,-5$	$7,-7$	$5,-5$
x_{5}	$3,-3$	$5,-5$	$4,-4$	$2,-2$	$3,-3$
x_{6}	$4,-4$	$3,-3$	$6,-6$	$5,-5$	$4,-4$

Minmax Strategies

Player i's minmax strategy against player -i in a 2-player game is a strategy that minimizes -i's best-case payoff, and the minmax value for i against -i is payoff.

Why would i want to play a minmax strategy?
In a two-player game, the minmax strategy for player i against player $-i$ is $\arg \min _{s_{i}} \max _{s_{-i}} u_{-i}\left(s_{i}, s_{-i}\right)$, and player $-i$'s minmax value is $\min _{s_{i}} \max _{s_{-i}} u_{-i}\left(s_{i}, s_{-i}\right)$.

In any finite, two-player, zero-sum game, in any Nash equilibrium each player receives a payoff that is equal to both his maxmin value and his minmax value.

- Each player's maxmin value is equal to his minmax value. By convention, the maxmin value for player 1 is called the value of the game.
- For both players, the set of maxmin strategies coincides with the set of minmax strategies.
- Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a Nash equilibrium.
-These are all the Nash equilibria.

Game with Sequential Actions

Normal-form representation is universal

Extensive-form games (not simultaneous actions)

- Exponentially smaller than the normal-form.
- The normal-form game representation does not incorporate any notion of sequence, or time, of the actions of the players.
- The extensive (or tree) form is an alternative representation that makes the temporal structure explicit.

Strategies and Equilibria

A pure strategy for a player in a perfectinformation game is a complete specification of which deterministic action to take at every node belonging to that player.
N.b. An agent's strategy requires a decision at each choice node, regardless of whether or not it is possible to reach that node given the other choice nodes.

The sharing game

A brother and sister following the following protocol for sharing two indivisible and identical presents from their parents.

- First the brother suggests a split, which can be one of three-he keeps both, she keeps both, or they each keep one.
- Then the sister chooses whether to accept or reject the split.
- If she accepts they each get their allocated present(s), and otherwise neither gets any gift.

Strategies and Equilibria

$\mathrm{S} 1=\{2-0,1-1,0-2\}$
S2 = \{(yes, yes, yes), (yes, yes, no), (yes, no, yes), (yes, no, no), (no, yes, yes),
(no, yes, no), (no, no, yes), (no, no, no)\}

29

$$
\begin{aligned}
& S 1=\{(A, G),(A, H),(B, G),(B, H)\} \\
& S 2=\{(C, E),(C, F),(D, E),(D, F)\}
\end{aligned}
$$

$$
(C, E) \quad(C, F) \quad(D, E) \quad(D, F)
$$

(A, G)	3,8	3,8	8,3	8,3
(A, H)	3,8	3,8	8,3	8,3
(B, G)	5,5	2,10	5,5	2,10
(B, H)	5,5	1,0	5,5	1,0

This transformation can always be performed

- it can result in an exponential blowup of the game representation.

The reverse transformation (from the normal form to the perfect-information extensive form) does not always exist.

Every (finite) perfect-information game in extensive form has a pure-strategy Nash equilibrium.

$$
(C, E) \quad(C, F) \quad(D, E) \quad(D, F)
$$

(A, G)	3,8	3,8	8,3	8,3
(A, H)	3,8	3,8	8,3	8,3
(B, G)	5,5	2,10	5,5	2,10
(B, H)	5,5	1,0	5,5	1,0

$$
(C, E) \quad(C, F) \quad(D, E) \quad(D, F)
$$

(A, G)	3,8	3,8	8,3	8,3
(A, H)	3,8	3,8	8,3	8,3
(B, G)	5,5	2,10	5,5	2,10
(B, H)	5,5	1,0	5,5	1,0

$$
(C, E) \quad(C, F) \quad(D, E) \quad(D, F)
$$

(A, G)	3,8	3,8	8,3	8,3
$(\mathrm{~A}, \mathrm{H})$	3,8	3,8	8,3	8,3
$(\mathrm{~B}, \mathrm{G})$	5,5	2,10	5,5	2,10
$(\mathrm{~B}, \mathrm{H})$	5,5	1,0	5,5	1,0

$$
(C, E) \quad(C, F) \quad(D, E) \quad(D, F)
$$

(A, G)	3,8	3,8	8,3	8,3
(A, H)	3,8	3,8	8,3	8,3
(B, G)	5,5	2,10	5,5	2,10
$\longrightarrow(B, H)$	5,5	1,0	5,5	1,0

(C,E) (C,F) (D,E) (D,F)

	(A, G)	3,8	3,8	8,3
$(\mathrm{~A}, \mathrm{H})$	3,8	3,8	8,3	8,3
$(\mathrm{~B}, \mathrm{G})$	5,5	2,10	5,5	2,10
$\longrightarrow(\mathrm{~B}, \mathrm{H})$	5,5	1,0	5,5	1,0

Player 1 plays a threat (look at the tree)
Is the threat believable?

Nash equilibrium can be too weak a notion for the extensive form.

$$
\{(\mathrm{A}, \mathrm{G}),(\mathrm{C}, \mathrm{~F})\}
$$

$$
\{(B, H),(C, E)\}
$$

38

Subgame

Given a perfect-information extensive-form game G, the subgame of G rooted at node h is the restriction of G to the descendants of h.

The set of subgames of G consists of all of subgames of G rooted at some node in G.

Subgame-perfect equilibrium

The subgame-perfect equilibria (SPE) of a game G are all strategy profiles s such that for any subgame G^{\prime} of G, the restriction of s to G^{\prime} is a Nash equilibrium of G^{\prime}.

SPE is also a Nash equilibrium

- every perfect-information extensive-form game has at least one subgame-perfect equilibrium.
not every NE is a SPE

$$
(C, E) \quad(C, F) \quad(D, E) \quad(D, F)
$$

(A, G)	3,8	3,8	8,3	8,3
(A, H)	3,8	3,8	8,3	8,3
(B, G)	5,5	2,10	5,5	2,10
(B, H)	5,5	1,0	5,5	1,0

Every strategy with H cannot be a SPE

