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Mixed Strategies


It would be a pretty bad idea to play any 

deterministic strategy in matching pennies


Idea: confuse the opponent by playing randomly

Define a strategy si for agent i as any probability distribution over the actions 
Ai.

pure strategy: only one action is played with positive probability

mixed strategy: more than one action is played with positive probability


these actions are called the support of the mixed strategy


Let the set of all strategies for i be Si

Let the set of all strategy profiles be S = S1 x … x Sn.
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Utility under Mixed Strategies


What is your payoff if all the players follow mixed strategy profile s ∈ S?


We can't just read this number from the game matrix anymore: we won't 
always end up in the same cell


Instead, use the idea of expected utility from decision theory:


si(ai) we denote the probability that an action ai will be played under mixed 
strategy si.
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Every finite game has a Nash equilibrium! [Nash, 1950] 

e.g., matching pennies: both players play heads/tails 50%/50%
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Computing Mixed Nash Equilibria: Battle of the Sexes


•  It's hard in general to compute Nash equilibria, but it's 
easy when you can guess the support 
•  For BoS, let's look for an equilibrium where all actions 
are part of the support 

•  Let player 2 play B with p, F with 1-p. 
•  If player 1 best-responds with a mixed strategy, player 
2 must make him indifferent between F and B (why?) 
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Computing Mixed Nash Equilibria: Battle of the Sexes


•  Let player 2 play B with p, F with 1-p. 
•  If player 1 best-responds with a mixed strategy, player 
2 must make him indifferent between F and B (why?) 

u1(B)=u1(F) 
2p+0(1-p)=0p+1(1-p) 

p=1/3 
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Computing Mixed Nash Equilibria: Battle of the Sexes


• Likewise, player 1 must randomize to make player 2 indifferent. 
• Why is player 1 willing to randomize? 
•  Let player 1 play B with q, F with (1-q) 

u2(B)=u2(F) 
q+0(1-q)=0q+2(1-q) 

q=2/3 

Thus the mixed strategies (2/3, 1/3), (1/3, 2/3) are a Nash 
equilibrium. 
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Interpreting Mixed Strategy Equilibria


What does it mean to play a mixed strategy? Different 
interpretations: 
• Randomize to confuse your opponent 

•  consider the matching pennies example 
• Players randomize when they are uncertain about the other's 
action 

•  consider battle of the sexes 

• Mixed strategies are a concise description of what might happen in 
repeated play: count of pure strategies in the limit 
• Mixed strategies describe population dynamics: 2 agents chosen 
from a population, all having deterministic strategies. MS is the 
probability of getting an agent who will play one PS or another. 
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Computing Nash Equilibria


How hard is it to compute the Nash equilibria of a game?


Two-player, zero-sum games: 

The Nash equilibrium problem for such games can be expressed as a linear 
program (LP), which means that equilibria can be computed in polynomial 
time.


Nash equilibrium of a two-player, general sum game, cannot be 
formulated as a linear program. 

Essentially, this is because the two players’ interests are no 
longer diametrically opposed.

NP-complete
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Computing Nash Equilibria


The following problems are NP-hard when applied to 
Nash equilibria: uniqueness, Pareto optimality, 
guaranteed social welfare.


Computing all of the equilibria of a two-player, general-
sum game requires worst-case time that is exponential 
in the number of actions for each player.
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Maxminimizer


• The maxmin strategy of player i in an n-player, 
general-sum game is a strategy that maximizes i’s 
worst-case payoff


•  in the situation where all the other players happen 
to play the strategies which cause the greatest 
harm to i. 


• The maxmin value (or security level) of the game for 
player i is that minimum amount of payoff guaranteed 
by a maxmin strategy.
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maxminimizer


Let G = <{1,2},(Ai),(≥i)> a zero sum-game


Action x* ∈ A1 is maxminimizer for 1:

∀x ∈ A1    min u1(x*,y) > min u1(x,y)


Action y* ∈ A2 is maxminimizer for 2:

∀y ∈ A2    min u2(x,y*) > min u2(x,y)


The best case among the worsts 
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maxminimizer


Action x* ∈ A1 is maxminimizer for 1:

∀x ∈ A1 min u1(x*,y) ≥ min u1(x,y)


maximises the minimum that I can guarantee

x* is a security strategy for 1


Solves for 1 maxxminyu1(x,y)

Solves for 2 maxyminxu2(x,y)
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Equilibria and maxminimizers


(x*,y*) is a N.eq for G, iff:


x* is a maxminimizer for 1;


y* is a maxminimizer for 2


maxxminyu1(x,y)  

maxyminxu2(x,y) 


u1(x*,y*)
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maxminimizers


Solves for 1


maxxminyu1(x,y)=


max{


min{u1(x,y)|y∈A2}


|x∈A1}
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y1 y2 y3 y4 y5 
x1 

2,-2 2,-2 3,-3 1,-1 1,-1 

x2 3,-3 5,-5 4,-4 6,-6 4,-4 

x3 5,-5 2,-2 4,-4 3,-3 3,-3 

x4 6,-6 8,-8 5,-5 7,-7 5,-5 

x5 3,-3 5,-5 4,-4 2,-2 3,-3 

x6 4,-4 3,-3 6,-6 5,-5 4,-4 



maxminimizers


Solves for 1


maxxminyu1(x,y)=


max{


min{u1(x,y)|y∈A2}


|x∈A1}


x1 = minyu1(x1,y) =1
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y1 y2 y3 y4 y5 
x1 

2,-2 2,-2 3,-3 1,-1 1,-1 

x2 3,-3 5,-5 4,-4 6,-6 4,-4 

x3 5,-5 2,-2 4,-4 3,-3 3,-3 

x4 6,-6 8,-8 5,-5 7,-7 5,-5 

x5 3,-3 5,-5 4,-4 2,-2 3,-3 

x6 4,-4 3,-3 6,-6 5,-5 4,-4 



maxminimizers


Solves for 1


maxxminyu1(x,y)=


max{


min{u1(x,y)|y∈A2}


|x∈A1}


x1 = minyu1(x1,y) =1

x2 = minyu1(x2,y) =3

…..

x6 = minyu1(x6,y) =3


18 

y1 y2 y3 y4 y5 
x1 

2,-2 2,-2 3,-3 1,-1 1,-1 

x2 3,-3 5,-5 4,-4 6,-6 4,-4 

x3 5,-5 2,-2 4,-4 3,-3 3,-3 

x4 6,-6 8,-8 5,-5 7,-7 5,-5 

x5 3,-3 5,-5 4,-4 2,-2 3,-3 

x6 4,-4 3,-3 6,-6 5,-5 4,-4 



maxminimizers


Solves for 1


maxxminyu1(x,y)=


max{


min{u1(x,y)|y∈A2}


|x∈A1}


x1 = minyu1(x1,y) =1

x2 = minyu1(x2,y) =3

…..

x6 = minyu1(x6,y) =3


max = 5 for x* = x4
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y1 y2 y3 y4 y5 
x1 

2,-2 2,-2 3,-3 1,-1 1,-1 

x2 3,-3 5,-5 4,-4 6,-6 4,-4 

x3 5,-5 2,-2 4,-4 3,-3 3,-3 

x4 6,-6 8,-8 5,-5 7,-7 5,-5 

x5 3,-3 5,-5 4,-4 2,-2 3,-3 

x6 4,-4 3,-3 6,-6 5,-5 4,-4 



maxminimizers


Solves for 2


maxyminxu2(x,y)=


max{


min{u2(x,y)|x∈A1}


|y∈A2}
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y1 y2 y3 y4 y5 
x1 

2,-2 2,-2 3,-3 1,-1 1,-1 

x2 3,-3 5,-5 4,-4 6,-6 4,-4 

x3 5,-5 2,-2 4,-4 3,-3 3,-3 

x4 6,-6 8,-8 5,-5 7,-7 5,-5 

x5 3,-3 5,-5 4,-4 2,-2 3,-3 

x6 4,-4 3,-3 6,-6 5,-5 4,-4 



maxminimizers


Solves for 2


maxxminyu2(x,y)=


max{


min{u1(x,y)|x∈A1}


|y∈A2}=-5


For y5
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y1 y2 y3 y4 y5 
x1 

2,-2 2,-2 3,-3 1,-1 1,-1 

x2 3,-3 5,-5 4,-4 6,-6 4,-4 

x3 5,-5 2,-2 4,-4 3,-3 3,-3 

x4 6,-6 8,-8 5,-5 7,-7 5,-5 

x5 3,-3 5,-5 4,-4 2,-2 3,-3 

x6 4,-4 3,-3 6,-6 5,-5 4,-4 



maxminimizers


Equilibrium (5,-5)


(x4,y5)
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y1 y2 y3 y4 y5 
x1 

2,-2 2,-2 3,-3 1,-1 1,-1 

x2 3,-3 5,-5 4,-4 6,-6 4,-4 

x3 5,-5 2,-2 4,-4 3,-3 3,-3 

x4 6,-6 8,-8 5,-5 7,-7 5,-5 

x5 3,-3 5,-5 4,-4 2,-2 3,-3 

x6 4,-4 3,-3 6,-6 5,-5 4,-4 



Minmax Strategies


Player i's minmax strategy against player -i in a 2-player game is a strategy 
that minimizes -i's best-case payoff, and the minmax value for i against -i is 
payoff.


Why would i want to play a minmax strategy?
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Minimax theorem (von Neumann, 1928)


In any finite, two-player, zero-sum game, in any Nash 
equilibrium each player receives a payoff that is equal to both 
his maxmin value and his minmax value.


•  Each player's maxmin value is equal to his minmax value. By convention, 
the maxmin value for player 1 is called the value of the game.


•  For both players, the set of maxmin strategies coincides with the set of 
minmax strategies.


•  Any maxmin strategy profile (or, equivalently, minmax strategy profile) is a 
Nash equilibrium. 


• These are all the Nash equilibria. 
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Game with Sequential Actions
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Normal-form representation is universal 

Extensive-form games (not simultaneous 
actions) 

•  Exponentially smaller than the normal-form. 
•  The normal-form game representation does not 

incorporate any notion of sequence, or time, of the 
actions of the players.  

•  The extensive (or tree) form is an alternative 
representation that makes the temporal structure 
explicit. 
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Strategies and Equilibria


A pure strategy for a player in a perfect-
information game is a complete specification of 
which deterministic action to take at every node 
belonging to that player.  

N.b. An agent’s strategy requires a decision at each 
choice node, regardless of whether or not it is possible 
to reach that node given the other choice nodes. 
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The sharing game 


A brother and sister following the following protocol for 
sharing two indivisible and identical presents from their 
parents.  

•  First the brother suggests a split, which can be one of 
three—he keeps both, she keeps both, or they each 
keep one.  
•  Then the sister chooses whether to accept or reject the 
split.  
•  If she accepts they each get their allocated present(s), 
and otherwise neither gets any gift. 
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Strategies and Equilibria


S1 = {2–0, 1–1, 0–2} 

S2 = {(yes, yes, yes), (yes, yes, no), (yes, no, yes), 
(yes, no, no), (no, yes, yes), 
(no, yes, no), (no, no, yes), (no, no, no)} 

29 



S1 = {(A,G), (A,H), (B,G), (B,H)} 
S2 = {(C,E), (C, F), (D,E), (D, F)} 
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Corresponding normal-form
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(C,E) (C,F) (D,E) (D,F) 

(A,G) 3,8 3,8 8,3 8,3 

(A,H) 3,8 3,8 8,3 8,3 

(B,G) 5,5 2,10 5,5 2,10 

(B,H) 5,5 1,0 5,5 1,0 



This transformation can always be performed 
•  it can result in an exponential blowup of the 

game representation. 

The reverse transformation (from the normal 
form to the perfect-information extensive form) 
does not always exist. 

Every (finite) perfect-information game in 
extensive form has a pure-strategy Nash 
equilibrium. 
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Nash equilibria
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(C,E) (C,F) (D,E) (D,F) 

(A,G) 3,8 3,8 8,3 8,3 

(A,H) 3,8 3,8 8,3 8,3 

(B,G) 5,5 2,10 5,5 2,10 

(B,H) 5,5 1,0 5,5 1,0 



Nash equilibria
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(C,E) (C,F) (D,E) (D,F) 

(A,G) 3,8 3,8 8,3 8,3 

(A,H) 3,8 3,8 8,3 8,3 

(B,G) 5,5 2,10 5,5 2,10 

(B,H) 5,5 1,0 5,5 1,0 



Nash equilibria
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(C,E) (C,F) (D,E) (D,F) 

(A,G) 3,8 3,8 8,3 8,3 

(A,H) 3,8 3,8 8,3 8,3 

(B,G) 5,5 2,10 5,5 2,10 

(B,H) 5,5 1,0 5,5 1,0 



Nash equilibria
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(C,E) (C,F) (D,E) (D,F) 

(A,G) 3,8 3,8 8,3 8,3 

(A,H) 3,8 3,8 8,3 8,3 

(B,G) 5,5 2,10 5,5 2,10 

(B,H) 5,5 1,0 5,5 1,0 



Nash equilibria


Player 1 plays a threat (look at the tree) 
Is the threat believable? 
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(C,E) (C,F) (D,E) (D,F) 

(A,G) 3,8 3,8 8,3 8,3 

(A,H) 3,8 3,8 8,3 8,3 

(B,G) 5,5 2,10 5,5 2,10 

(B,H) 5,5 1,0 5,5 1,0 



Nash equilibria


Nash equilibrium can be too weak a notion for 
the extensive form. 

    {(A,G), (C, F)}             {(B,H), (C,E)} 
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Subgame


Given a perfect-information extensive-form 
game G, the subgame of G rooted at node h is 
the restriction of G to the descendants of h. 

The set of subgames of G consists of all of 
subgames of G rooted at some node in G. 
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Subgame-perfect equilibrium


The subgame-perfect equilibria (SPE) of a game 
G are all strategy profiles s such that for any 
subgame G′ of G, the restriction of s to G′ is a 
Nash equilibrium of G′. 

SPE is also a Nash equilibrium 
•  every perfect-information extensive-form game has 

at least one subgame-perfect equilibrium. 

not every NE is a SPE 
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Nash equilibria
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(C,E) (C,F) (D,E) (D,F) 

(A,G) 3,8 3,8 8,3 8,3 

(A,H) 3,8 3,8 8,3 8,3 

(B,G) 5,5 2,10 5,5 2,10 

(B,H) 5,5 1,0 5,5 1,0 



Nash equilibria


Every strategy with H cannot be a SPE 
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