
The Jason
Agent

Programming
Language

Chapter 3

Fabrizio Natale

Agent programming

! First, let's make a distinction
between:

! An agent program;

! An agent architecture.

Fabrizio Natale

Agent programming

!  An agent architecture is the software
framework within which an agent program
runs

!  An agent program directs the agent
behaviour

Much of what the agent effectively does is
determined by the architecture itself, without
the programmer having to worry about it

Fabrizio Natale

BDI agents

!  BDI agents are defined as reactive planning
systems :

!  Systems that are not meant to compute the
value of a function and terminate

!  But rather designed to be permanently
running, reacting to some form of ‘events’
from the environment

!  Plans are courses of action that agents
commit to execute so as to handle such
events.

Fabrizio Natale

Jason - Main categories

! The language interpreted by Jason is an
extension of AgentSpeak, which is based
on the BDI architecture.

! The BDI architecture components are:
!  Belief base: the interpreter will perceive the

environment, constantly, and update the
belief base accordingly;

!  Goals (or Desires) achieved by the
execution of

!  Plans (or Intentions).
Fabrizio Natale

Jason – Beliefs

!  Any agent has a belief base which in its
simplest form is a collection of literals.

!  Information is represented in symbolic form by
predicates such as:

!  tall(alessandro) which expresses a particular
property of an object or individual;

!  likes(marco, chocolate) which represents a
certain relationship between two objects.

Fabrizio Natale

Jason – Beliefs

! A literal is such a predicate or its negation
! When a formula such as likes(marco,

chocolate) appears in an agent's belief,
that is only meant to express the fact that
the agent currently believes that to be
true.

Fabrizio Natale

Jason – Basics of logic
programming

! Any symbol starting with a lowercase
letter is called an atom which is used to
represent particular individuals or objects.
E.g. faber is an atom.

! A symbol starting with an uppercase is
interpreted as a logical variable.

! E.g. Person is a variable.
! Numbers and strings are also classified as

constants.

Fabrizio Natale

Jason – Basics of logic
programming

!  Initially variables are free or uninstantiated
and once instantiated or bound to a value
they maintain that value throughout their
scope.

!  Variables can be bound to a constant (i.e. an
atom, a number, or a string), or to a more
complex data type called structure.

!  A structure can be defined as follows:
staff("Faber", 23, student)

Fabrizio Natale

Jason – Basics of logic
programming

! That structure can represent a student in a
university.

! Structures start with an atom (called the
functor) and are followed by a number of
terms (called arguments) separated by
commas and enclosed in parentheses.

! Predicates represent a logical proposition
and are called facts.

Fabrizio Natale

Jason – Basics of logic
programming

! The number of arguments of a predicate/
structure is important, and is called its
arity.

! A particular structure is referred to by its
functor and its arity: from the previous
example, the structure is referred to by
"staff/3" and it must have always exactly
three terms as arguments (otherwise is a
different structure)

Fabrizio Natale

Jason – Basics of logic
programming

! A special type of structure are lists. They
are represented as [item1, item2].

! A special operator ("|") can be used to
separate the first item in a list from the list
of all remaining items in it. E.g. [H|T]
matched with [1,2,3] follows that H is
instantiated with 1 and T with the list [2,3].

Fabrizio Natale

Jason – Annotations

!  Annotations are complex terms that provide
details that are strongly associated with one
particular belief.

!  open(school)[expires(august)]
!  Means that the agent believes that school is

open, but as soon as august comes in, that
should be no longer believed to hold.

!  We could write also open_until(school,august)

Fabrizio Natale

Jason – Annotations

! There are two advantages of the way
annotations are used in Jason:
!  Elegant notation;
!  Easy management of the belief base.

Fabrizio Natale

Jason – Annotations

!  It is also possible to use nested
annotations:

!  loves(maria,bob)[source(john)[source(maria)]

! There are belief annotations which do
have specific meaning for the interpreter.
One of those is the source annotation.

!  It is used to record what was the source of
the information leading to a particular
belief.

Fabrizio Natale

Jason – Annotations

!  There are three different types of information
source for agents in multi-agent systems:
!  Perceptual information: an agent acquires certain

beliefs as a consequence of the sensing of its
environment;

!  Communication: an agent receives information
from other agents and it is useful to know exactly
which agent provided each information;

!  Mental notes: these beliefs are added to the belief
base by the agent itself as part of an executing
plan. They can be useful to remind of things that
happened in the past, or things the agent has
done or promised.

Fabrizio Natale

Jason – Annotations

!  For the first type of information the interpreter
automatically adds an annotation
source(percept).

!  For mental notes, we'll have source(self).
!  Finally, any other source of information

annotated by interpreter will be the name of
the agent which sent a communication
message such as: likes(marco, chocolate)
[source(marco)]

Fabrizio Natale

Jason – Negations

! The closed world assumption may be
understood as follows:
!  Anything that is neither known to be true,

nor derivable from the known facts using
the rules in the program, is assumed to be
false.

Fabrizio Natale

Jason – Negations

! The "not" operator is used to mean that
the negation of a formula is true if the
interpreter fails to derive the formula using
the facts and rules in the program.

! There's another type of negation,
denoted by the "~" operator and called
strong negation; is used to express that an
agent explicitly believes something to be
false.

Fabrizio Natale

Jason – Negations

! The belief colour(box1,white) means that
the agent believes the colour of box1 is
white;

! whereas the belief ~colour(box1,white)
means that the agent believes that it is
not the case that the colour of box1 is
white.

Fabrizio Natale

Jason – Negations

! Example:

colour(box1,blue)[source(bob)]
~colour(box1,white)[source(john)]
colour(box1,red)[source(percept)]
colourblind(bob)[source(self),degOfCert(0.7)]
liar(bob)[source(self),degOfCert(0.2)]

Fabrizio Natale

Jason – Rules

!  Consider the following rules:
likely_colour(C,B) :- colour(C,B)[source(S)] & (S == self |
S==percept)
likely_colour(C,B) :- colour(C,B)[degOfCert(D1)] & not
(colour(_,B)[degOfCert(D2)] & D2 > D1) & not ~ colour(C,B)
!  To the left of the ":-" operator, can be only one

literal, which is the conclusion to be made if
the condition to the right is satisfied.

Fabrizio Natale

Jason – Goals

!  Whereas beliefs express properties that are
believed to be true of the world in which the
agent is situated, goals express the properties
of the states of the world that the agent
wishes to bring about.

!  Normally, a goal is represented as the
commitment of the agent to act so as to
change the world to a state in which the
agent will believe that the goal is indeed true.

!  E.g. own(house)

Fabrizio Natale

Jason – Goals

!  There are two types of goal in AgentSpeak:
achievements goals and test goals.

!  The first ones are denoted by the "!" operator,
while the others by the "?" operator.

!  The previous example shows a particular use
of an achievement goal. A test goal is used,
instead, simply to retrieve information that is
available in the agent's belief base.

Fabrizio Natale

Jason – Goals

! When we write ?bank_balance(BB), that is
typically because we want the logical
variable BB to be instantiated with the
specific amount of money the agent
currently believes its bank balance is.

! Test goals can also lead to the execution
of plans in certain circumstances.

Fabrizio Natale

Jason – Plans

! An AgentSpeak plan has three distinct
parts: the triggering event, the context,
and the body.

! The triggering event and the context are
called the head of the plan.

! The three plan parts are syntactically
separated by ":" and "<-" as follows:
triggering_event : context <- body

Fabrizio Natale

Jason – Plans: Triggering event

! There are two important aspects of agent
behaviour: reactiveness and pro-
activeness.

! Goals determine the agent's pro-active
behaviour.

! While acting so as to achieve their goals,
agents need to be attentive to changes
in their environment.

Fabrizio Natale

Jason – Plans: Triggering event

!  Changes in the environment can also mean
that there are new opportunities for the agent
to do thing, perhaps considering adopting
new goals that they previously did not have
or indeed dropping existing goals.

!  Two types of changes in an agent's mental
attitudes (changes in beliefs and changes in
the agent's goals) create the events upon
which agents will act. Such changes can be
of two types: addition and deletion.

Fabrizio Natale

Jason – Plans: Triggering event

! The triggering event part of a plan exists
precisely to tell the agent, which are the
specific events for which the plan is to be
used.

!  If the triggering event of a plan matches
a particular event, we say that the plan is
relevant for that particular event.

Fabrizio Natale

Jason – Plans: Triggering event

Fabrizio Natale

Jason – Plans: Triggering event

!  Events for belief additions and deletions
happen when the agent updates its beliefs
according to its perception of the
environment obtained at every reasoning
cycle.

!  Events due to the agent having new goals
happen mostly as a consequence of the
execution of other plans, but also as a
consequence of agent communication.

!  The goal deletion types of events are used for
handling plan failure.

Fabrizio Natale

Jason – Plans: Triggering event

!  Test goals are normally used to retrieve simple
information from the belief base.
For example, I normally remember how many packets
of pasta I have in the larder.

!  When I need that information, I just retrieve it from
memory.

!  However, if I happen not to have that information
to hand, I may need to perform an action
specifically to find out this information.

!  The action might be to ask someone else, or to go
to the larder myself.

Fabrizio Natale

Jason – Plans: Context

!  The context of a plan also relates to an important
aspect of reactive planning systems.

!  The context of a plan is used precisely for
checking the current situation so as to determine
whether a particular plan is likely to succeed in
handling the event given the latest information the
agent has about its environment.

!  A plan is only chosen for execution if its context is
a logical consequence of the agent's beliefs.

Fabrizio Natale

Jason – Plans: Context

!  Contexts are used to define when a plan
should be considered applicable.

!  It is often the case that a context is simply a
conjunction of default literals and relational
expressions.

!  Default literals are literals which may have
another type of negation ("not" operator)

!  Logical expressions can appear by combining
literals with operators and ("&") and or ("|").

Fabrizio Natale

Jason – Plans: Context

Fabrizio Natale

Jason – Plans: Context

!  Examples of plan contexts could be as
follows:

+!prepare(Something) : number_of_people(N) &
stock(Something, S) & S > N <- …

+!buy(Something) : not ~legal(Something) &
price(Something, P) & bank_balance(B) & B > P <-
…

Fabrizio Natale

Jason – Plans: Body

!  The body of a plan is simply a sequence of formulæ
determining a course of action, one that will,
hopefully, succeed in handling the event that
triggered the plan.

!  Another important construct appearing in plan
bodies is that of a goal this allows us to say what are
the (sub)goals that the agent should adopt and that
need to be achieved in order for that plan to handle
an event successfully.

!  We can refer to the term subgoals, given that the
plan where they appear can itself be a plan to
achieve a particular goal − recall that the triggering
events allow us to write plans to be executed when
the agent has a new goal to achieve.

Fabrizio Natale

Jason – Plans: Body

! The body of a plan defines a course of
action for the agent to take when an
event that matches the plan’s triggering
event has happened and the context of
the plan is true in accordance with the
agent’s beliefs (and the plan is chosen for
execution).

! The course of action is represented by a
sequence of formulæ, each separated
from the other by ‘;’.

Fabrizio Natale

Jason – Plans: Body

! There are six different types of formulæ
that can appear in a plan:
!  actions;
!  achievements goals;
!  test goals;
!  mental notes;
!  internal actions;
!  expressions;

Fabrizio Natale

Jason – Plans label

! We can give a specific label to a plan.
!  It is sometimes necessary to be able to

refer to a particular plan that the agent is
running.

! The general notation for plans with a
specific label is as follows:
@label t_event: context <- body

Fabrizio Natale

